• Title/Summary/Keyword: Reproductive tissues

Search Result 290, Processing Time 0.018 seconds

Cathepsin B in Eutopic and Ectopic Endometrial Tissues of Patients with Endometriosis

  • Kim, Chung-Hoon;Lee, You-Jeong;Kim, Jun-Bum;Lee, Young-Jin;Ahn, Jun-Woo;Kim, Sung-Hoon;Chae, Hee-Dong;Kang, Byung-Moon
    • Development and Reproduction
    • /
    • v.17 no.2
    • /
    • pp.133-140
    • /
    • 2013
  • This study was performed to investigate the expression of cathepsin B mRNA and protein in eutopic and ectopic endometrial tissues of patients with endometriosis and in normal endometrial tissues and to clarify the association between the cathepsin B expression and endometriosis. A total of 40 women with histologically confirmed endometriosis were recruited for study group. For controls, 20 women undergoing operative treatment for uterine myoma, cervical intraepithelial neoplasia (CIN) or benign gynecologic conditions other than endometriosis were recruited. Eutopic endometrial tissues of both groups and ectopic endometrial tissue of study group were collected during the operations. We employed real time reverse transcriptase - polymerase chain reaction (RT-PCR) to quantify mRNA levels of cathepsin B in these tissues. Then, we performed western blot analysis to measure the protein levels of cathepsin B. The expressions of cathepsin B mRNA and protein were significantly higher in both eutopic and ectopic endometrial tissues of women with endometriosis than in endometrial tissues of controls. These data suggest that the higher expression of cathepsin B in the endometrial tissues might be associated with the development of endometriosis. In addition, eutopic endometrium itself with higher expression cathepsin B may play a pivotal role in the histogenesis of endometriosis.

Light and Electron Microscopic Observation in the Frozen-thawed Mouse Testicular Tissues (동결보존된 생쥐 고환조직 세포의 광학 및 전자현미경적 관찰)

  • Han, Sang-Chul;Song, Sang-Jin;Lee, Sun-Hee;Oh, Seung-Han;Koong, Mi-Kyung;Park, Yong-Seog
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.2
    • /
    • pp.127-133
    • /
    • 2003
  • Objective: The aim of this study was to investigate the morphological aspects of testicular tissue before and after freezing-thawing by light and transmission electron microscopy. Methods: Tissue biopsies were carried out on mouse testis for freezing. Samples in medium containing 20% glycerol were frozen by computer-controlled freezing program. The effect of freezing-thawing on the structural change of testicular tissues were examined by light and electron microscopy. Results: The freezing-thawing procedure had no significant effect on tubular diameter. However, it caused folding of the lamina propria, and notable damage to Sertoli cells, spermatogonia and spermatocytes. The cells were detached, desquamated from the basal lamina and had increased vacuolization. Round spermatids, elongated spermatids and spermatozoa were less affected, and most of them maintained their normal structure. Conclusions: The structure of spermatogonia, spermatocyte and basal compartments in seminiferous epithelium was significantly altered by freezing-thawing procedure of mouse testicular tissues. Thus, we need to develop a more reliable method for the cryopreservation of testicular tissues.

Expression of Endometriosis Related Genes in the Shed Endometrial Tissues from Menstrual Blood (생리혈에 존재하는 자궁내막조직에서 자궁내막증 관련 유전자의 발현 양상)

  • Park, Chan-Woo;Jun, Jin-Hyun;Koong, Mi-Kyoung;Song, In-Ok
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.34 no.4
    • /
    • pp.275-283
    • /
    • 2007
  • Objective: This study was performed to investigate the expressions of endometriosis related genes in shed endometrial tissues from menstrual blood of patients with or without endometriosis. Methods: The shed endometrial tissues were collected on 2$^{nd}$ or 3$^{rd}$ day of menstrual cycle with Wallace catheter in patients with endometriosis (n=16) and without endometriosis (n=26). The mRNA expressions of twelve kinds of endometriosis related genes were compared between two groups using semi-quantitative RT-PCR. Results: The collected shed endometrium was confirmed by histological observation. Expressions of telomerase, c-kit and aromatase mRNA were not detected by RT-PCR in shed endometrial tissues. The mRNA expressions of apoptosis related genes (fas, fas ligand, bcl-2, bax), stem cell factor, estrogen receptor-$\alpha$/$\alpha$, endometriosis protein-I and secretory leukocyte protease inhibitor gene were similar between shed endometrial tissues with endometriosis and without endometriosis. Conclusion: We could not find the difference of mRNA expressions of tested endometriosis related genes between shed endometrial tissues with or without endometriosis by semi-quantitative RT-PCR analysis. It may be related to the dynamical changes of gene expressions in the endometrium with menstrual cycle.

Overexpression of Cyclooxygenase-1 Correlates with Poor Prognosis in Renal Cell Carcinoma

  • Yu, Zu-Hu;Zhang, Qiang;Wang, Ya-Dong;Chen, Jing;Jiang, Zhi-Mao;Shi, Min;Guo, Xin;Qin, Jie;Cui, Guang-Hui;Cai, Zhi-Ming;Gui, Yao-Ting;Lai, Yong-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3729-3734
    • /
    • 2013
  • The aim of this study was to evaluate expression of COX-1 in renal cell carcinoma (RCC) and its prognostic value. mRNA of COX-1 was detected in 42 paired RCC and adjacent normal tissues with quantitative realtime polymerase chain reaction (qRT-PCR). Expression of COX-1 was also evaluated in 196 RCC sections and 91 adjacent normal tissues with immunohistochemistry. Statistical analysis was performed to assess COX-1 expression in RCC and its prognostic significance. The results of qRT-PCR showed mRNA levels of COX-1 in RCC tissues to be significantly higher than that in adjacent normal tissues (p < 0.001). Immunohistochemical assays also revealed COX-1 to be overexpressed in RCC tissues (p < 0.001). Statistical analysis demonstrated high expression of COX-1 was correlated with tumour size (p = 0.002), pathological stage (p = 0.003), TNM stage (p = 0.003, 0.007, 0.027, respectively), and tumour recurrence (p < 0.001). Survival analysis indicated patients with high expression of COX-1 had shorter survival time (p < 0.001), and COX-1 was an independent predictor. This is the first study to reveal overexpression of COX-1 in RRC and point to use as a prognostic marker in affected patients.

Expression of Steroidogenesis-related Genes in Rat Adipose Tissues

  • Byeon, Hye Rim;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.20 no.3
    • /
    • pp.197-205
    • /
    • 2016
  • Adipose tissue is one of the major endocrine gland. More recently, local production of steroids in adipocytes differentiated from mouse 3T3-L1 cell-line was reported. We hypothesized that rat adipocytes have steroidogenic machinery and the expression patterns of the components might be differentially regulated, depending on the distribution and sex. To verify this hypothesis, we collected the adipose tissues depot-and sex-specifically at postnatal day (PND) 30, and performed quantitative RT-PCRs. In overall aspects, the abundances of the transcripts were lower in the brown adipose of both sexes. $3{\beta}-HSD$ transcript levels in female abdominal and reproductive adipose, CYP17 transcript levels in female reproductive adipose, $17{\beta}-HSD$ transcript levels in female abdominal and reproductive adipose, and CYP19 transcript levels in female abdominal adipose were significantly lower than those of male counterparts. Similar to steroidogenic factors, the abundance of the $ER-{\alpha}$ transcripts were generally lower in the brown adipose of both sexes. $ER-{\beta}$ transcripts were more abundant in male white adipose depots than their female counterparts. The levels of LHR transcripts in female reproductive adipose were significantly higher than those of male counterpart. In conclusion, our study demonstrated that the expressions of steroidogenesis-related genes were depot- and sex-specifically occurred in the immature male and female rat adipose tissues. Our study suggested that the adipose tissues are not only targets but de novo synthesizing sites of sex steroid(s), though the synthesizing activities could be much less than in gonads. Further researches in this field will be helpful for understanding the adipose physiology and for medical application such as sex-specific steroid supplement therapies for older populations.

Expression of Luteinizing Hormone (LH) Gene in Rat Uterus and Epididymis (흰쥐 자궁과 부정소에서의 Luteinizing Hormone (LH) 유전자 발현)

  • Lee, Sung-Ho;Lee, Young-Ki
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.2
    • /
    • pp.157-161
    • /
    • 1999
  • Recent studies clearly demonstrated that the novel expression of LH gene in the rat testis, and suggested the local action of the LH-like molecule. The present study was performed to analyze the expression of LH genes in the rat accessory reproductive organs. Expression of LH subunit genes in the rat uterus and epididymis was demonstrated by reverse transcription-polymerase chain reaction (RT-PCR) and specific LH radioimmunoassay (RIA). The $LH_{beta}$ transcripts in these organs contained the published cDNA structure, the pituitary type exons 1-3, which encoded the entire $LH_{beta}$ polypeptide. Presence of the transcripts for the ${\alpha}$-subunit in the rat reproductive tissues were also confirmed by RT-PCR. In the LH RIA, significant levels of LH were detected in crude extracts from the rat ovary, uterus and epididymis. The competition curves with increasing amount of tissue extracts were parallel with those of standard peptide, indicating that the immunoreactive LH-like materials in these tissues are similar to authentic pituitary LH molecule. In rat epididymis, the highest amount of immunoreactive LH was detected in corpus area. Our findings demonstrated that the genes for LH subunits are expressed in the rat accessory reproductive organs, and suggested that these extrapituitary LH may act as a local regulator with auto and/or paracrine manner.

  • PDF

Effect of Long Term Reverse Feeding on the Reproductive and Non-reproductive Tissues in Male Mice

  • Go, Eun Hye;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.18 no.3
    • /
    • pp.161-166
    • /
    • 2014
  • Previously, we demonstrated that the shift and/or restriction of feeding time during relatively short-term period (4 weeks) could alter the pituitary gonadotropin expression and the weights of seminal vesicle and prostate in rats. We also found that the reverse feeding (RF) schedule (up to 8 weeks) might induce an adaptable metabolic stress and cause impairment of androgen-dependent reproductive tissues. In the present study, we extended the RF time regimen up to 12 weeks, and measured the reproductive tissue weights. After 4 and 8 weeks of RF, the weights of epididymis were not significantly different. After 12 weeks, however, epididymis weights of RF animals were significantly different (CON 12W : RF 12W = $48.26{\pm}0.62mg$ : $44.05{\pm}1.57mg$, p<0.05). After 4 and 12 weeks of feeding, seminal vesicle weights of RF animals were significantly decreased (CON 4W : RF 4W = $79.36{\pm}8.34mg$ : $46.28{\pm}2.43mg$, p<0.001; CON 12W : RF 12W = $72.04{\pm}3.76mg$ : $46.71{\pm}2.27mg$, p<0.001, respectively). Prostate weights were not changed by RF. Kidney and spleen weights of RF animals were significantly different on weeks 4 and 12 (Kidney, CON 4W : RF 4W = $249.72{\pm}4.20mg$ : $228.41{\pm}3.03mg$, p<0.001; CON 12W : RF 12W = $309.15{\pm}7.49mg$ : $250.72{\pm}6.13mg$, p<0.001, respectively, Spleen, CON 4W : RF 4W = $111.26{\pm}3.76mg$ : $96.88{\pm}4.69mg$, p<0.05; CON 12W : RF 12W = $123.93{\pm}10.72mg$ : $94.68{\pm}5.65mg$, p<0.05, respectively). Histology analysis of seminal vesicle revealed that the thinner epithelial cell layers, reduced complexities of swollen papilla folding in the exocrine glands on weeks 4 and 12 of RF. There was no histological difference between control and RF group on week 8. The present study indicates that up to 12 weeks RF induced differential changes in tissue weights of male mice. In particular, seminal vesicle, kidney and spleen seemed to temporarily adapted to the RF-induced metabolic stress on week 8 of feeding schedule. These results confirmed the our previous study that the RF might induce an adaptable metabolic stress and cause impairment of androgen-dependent reproductive tissues such as epididymis and seminal vesicle as well as non-reproductive tissues such as kidney and spleen. Further studies will be needed to achieve a better understanding of the how does mealtime shift affect the reproductive function and exact nature of adaptation.

Seasonal Changes in Biochemical Components of the Adductor Muscle and Visceral Mass Tissues in the Female Cyclina sinensis, in Relation to Gonad Developmental Phases (암컷 가무락조개, Cyclina sinensis의 난소 발달단계에 따른 폐각근 조직과 내장낭 조직의 생화학적 성분의 계절적 변화)

  • Chung, Ee-Yung;Park, Kwan-Ha;Kim, Jong-Bae;Lee, Chang-Hoon
    • The Korean Journal of Malacology
    • /
    • v.20 no.1
    • /
    • pp.85-92
    • /
    • 2004
  • We investigated the reproductive cycle with gonadal development of the female Cyclina sinensis by histological observations and seasonal changes in biochemical components of the adductor muscle and visceral mass tissues were studied by biochemical analysis, from January to December, 2001. The reproductive cycle of this species can be classified into five successive stages: early active stage (February to April), late active stage (March to June), ripe stage (May to August), partially spawned stage (July to October) and spent/inactive stage (September to February). Total protein contents in the adductor muscle tissues reached the maximum in February (early active stage) and appeared the minimum in June (ripe stage), while their contents in the visceral mass tissues reached the maximum in the late active and ripe stages (June) and gradually decreased from July (partially spawned stage) to November (spent/inactive stage). Changes in total protein contents showed a negative correlationship between the adductor muscle and visceral mass tissues (r = -0.499, p = 0.099). Total lipid contents in the adductor muscle tissues reached the maximum in January (the inactive stages) and their contents gradually decreased from February. Their contents in the visceral mass tissues, however, reached the maximum in June (late active and ripe stage) and gradually decreased from July (the partially spawned stage). On the whole, total lipid contents showed a negative correlationship between the adductor muscle and visceral mass tissues (r = -0.631, p < 0.05). Therefore, These results indicate that the nutrient contents of the adductor muscle and visceral muscle tissues change in response to gonadal energy needs. Glycogen contents in the adductor muscle tissue reached the maximum in March (early and late active stages) and decreased from July to September (partially spawned stage). while their contents in the visceral mass tissues reached the maximum in June (late active and ripe stages) and gradually decreased from July (partially spawned stage). Thereafter, their levels gradually increased in November (spent/inactive stage). On the whole, changes in glycogen contents appeared negative correlationship between the adductor muscle and visceral mass tissues. However, they showed no significant different (r = -0.307, p = 0.331).

  • PDF

Xenografting of the Human Vitrified Ovarian Tissues into the Immune Deficient Animal (사람 난소조직의 초자화 냉동보존과 면역결핍 동물에의 이식)

  • Lee, Kyung-Ah;Yoon, Se-Jin;Lee, Sook-Hyun;Shin, Chang-Sook;Choi, An-Na;Cho, Yong-Seon;Yoon, Tae-Ki;Cha, Kwang-Yul
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.2
    • /
    • pp.145-149
    • /
    • 2000
  • Objective: The present study was conducted to evaluate the viability of germ cells from the adult and fetal ovarian tissues after vitrification followed by xenografting. Method: The human adult ovarian tissues were obtained from 33 years old patient, and the fetal ovarian tissues were obtained from 22 weeks and 25 weeks in gestation. Ovarian tissues were cryopreserved by vitrification with 5.5 M ethylene glycol (EG 5.5) and 1.0 M sucrose as cryoprotectants. Adult and fetal ovarian tissues were pre-equilibrated with EG 5.5 at room temperature for 10 and 5 minutes, respectively and plunged into liquid nitrogen immediately. Frozen-thawed tissues were xenografted into NOD-SCID mice to evaluate the viability and capacity for further growth of the primordial follicles. Grafts were recovered from the recipients 4 weeks after transplantation and histological analysis was accomplished. Result and Conclusion: Grafts recovered 4 weeks after transplantation contained less number of oocytes and primordial follicles compared to that of the fresh tissues. Survived follicles were mainly primordial and intermediary with larger diameter and more granulosa cells. It is confirmed that 1) the ovarian tissues were healthy and the germ cells were survived after vitrification, and 2) the survived fetal primordial follicles after vitrification resumed the growth in the xenografts.

  • PDF

Influence of hydrogel encapsulation during cryopreservation of ovarian tissues and impact of post-thawing in vitro culture systems in a research animal model

  • Thuwanut, Paweena;Comizzoli, Pierre;Pimpin, Alongkorn;Srituravanich, Weerayut;Sereepapong, Wisan;Pruksananonda, Kamthorn;Taweepolcharoen, Charoen;Tuntiviriyapun, Punkavee;Suebthawinkul, Chanakarn;Sirayapiwat, Porntip
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.2
    • /
    • pp.111-123
    • /
    • 2021
  • Objective: Using domestic cats as a biomedical research model for fertility preservation, the present study aimed to characterize the influences of ovarian tissue encapsulation in biodegradable hydrogel matrix (fibrinogen/thrombin) on resilience to cryopreservation, and static versus non-static culture systems following ovarian tissue encapsulation and cryopreservation on follicle quality. Methods: In experiment I, ovarian tissues (n=21 animals; 567 ovarian fragments) were assigned to controls or hydrogel encapsulation with 5 or 10 mg/mL fibrinogen (5 or 10 FG). Following cryopreservation (slow freezing or vitrification), follicle viability, morphology, density, and key protein phosphorylation were assessed. In experiment II (based on the findings from experiment I), ovarian tissues (n=10 animals; 270 ovarian fragments) were encapsulated with 10 FG, cryopreserved, and in vitro cultured under static or non-static systems for 7 days followed by similar follicle quality assessments. Results: In experiment I, the combination of 10 FG encapsulation/slow freezing led to greater post-thawed follicle quality than in the control group, as shown by follicle viability (66.9%±2.2% vs. 61.5%±3.1%), normal follicle morphology (62.2% ±2.1% vs. 55.2%±3.5%), and the relative band intensity of vascular endothelial growth factor protein phosphorylation (0.58±0.06 vs. 0.42±0.09). Experiment II demonstrated that hydrogel encapsulation promoted follicle survival and maintenance of follicle development regardless of the culture system when compared to fresh controls. Conclusion: These results provide a better understanding of the role of hydrogel encapsulation and culture systems in ovarian tissue cryopreservation and follicle quality outcomes using an animal model, paving the way for optimized approaches to human fertility preservation.