• Title/Summary/Keyword: Reproductive Function

Search Result 470, Processing Time 0.023 seconds

Effect of electromagnetic field exposure on the reproductive system

  • Gye, Myung-Chan;Park, Chan-Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • The safety of human exposure to an ever-increasing number and diversity of electromagnetic field (EMF) sources both at work and at home has become a public health issue. To date, many in vivo and in vitro studies have revealed that EMF exposure can alter cellular homeostasis, endocrine function, reproductive function, and fetal development in animal systems. Reproductive parameters reported to be altered by EMF exposure include male germ cell death, the estrous cycle, reproductive endocrine hormones, reproductive organ weights, sperm motility, early embryonic development, and pregnancy success. At the cellular level, an increase in free radicals and $[Ca^{2+}]i$ may mediate the effect of EMFs and lead to cell growth inhibition, protein misfolding, and DNA breaks. The effect of EMF exposure on reproductive function differs according to frequency and wave, strength (energy), and duration of exposure. In the present review, the effects of EMFs on reproductive function are summarized according to the types of EMF, wave type, strength, and duration of exposure at cellular and organism levels.

Effect of thymectomy on the female reproductive cycle in neonatal guinea pigs

  • Murali, P.;Radhika, J.;Alwin, D.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.47 no.1
    • /
    • pp.12-19
    • /
    • 2020
  • Objective: The appropriate function of the hypothalamic-pituitary-gonadal axis is essential for maintaining proper reproductive function. In female mammals, the hypothalamic-pituitary-gonadal axis regulates reproductive changes that take place in the estrus cycle and are necessary for successful reproduction. This study was conducted to investigate the effect of thymectomy on the estrus cycle in neonatally thymectomized guinea pigs. Methods: In this study, 12 female guinea pigs, six thymectomized and six sham-operated, were studied. The effects of neonatal thymectomy at 5-7 days of age on parameters of the reproductive axis were examined in female guinea pigs. Gonadotropin and 17β-estradiol levels were assessed at regular intervals (days 0, 3, 6, 9, 12, and 15) of the estrus cycle, and the time of vaginal opening in the thymectomized and shamoperated guinea pigs was determined. Results: Significant reductions in gonadotropins and 17β-estradiol levels during estrus cycle were found in neonatally thymectomized female guinea pigs compared to sham-operated guinea pigs. Conclusion: The results of this study underscore the importance of the thymus in the neonatal period for normal female reproductive function.

Mesenchymal stem cells for restoration of ovarian function

  • Yoon, Sook Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.46 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • With the progress of regenerative medicine, mesenchymal stem cells (MSCs) have received attention as a way to restore ovarian function. It has been reported that MSCs derived from bone marrow, adipose, umbilical cord blood, menstrual blood, and amniotic fluid improved ovarian function. In light of previous studies and advances in this field, there are increased expectations regarding the utilization of MSCs to restore ovarian function. This review summarizes recent research into potential applications of MSCs in women with infertility or primary ovarian insufficiency, including cases where these conditions are induced by anticancer therapy.

Developmental and reproductive toxicity assessment in rats with KGC-HJ3, Korean Red Ginseng with Angelica gigas and Deer antlers

  • Lee, Jinsoo;Jeong, Ji-Seong;Cho, Kyung-Jin;Moon, Kyeong-Nang;Kim, Sang Yun;Han, Byungcheol;Kim, Yong-Soon;Jeong, Eun Ju;Chung, Moon-Koo;Yu, Wook-Joon
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.242-251
    • /
    • 2019
  • Background: Korean Red Ginseng has been widely used in traditional oriental medicine for a prolonged period, and its pharmacological effects have been extensively investigated. In addition, Angelica gigas and deer antlers were also used as a tonic medicine with Korean Red Ginseng as the oriental herbal therapy. Methods: This study was conducted to evaluate the potential toxicological effect of KGC-HJ3, Korean Red Ginseng with angelica gigas and deer antlers, on reproductive and developmental functions including fertility, early embryonic development, maternal function, and embryo-fetal development. KGC-HJ3 was administered by oral gavage to Sprague-Dawley rats (22 animals per sex per group) at dose levels of 0 mg/kg (control), 500 mg/kg, 1000 mg/kg, and 2000 mg/kg to evaluate the potential toxicological effect on fertility and early embryonic development. In addition, KGC-HJ3 was also administered by oral gavage to mating-proven Sprague-Dawley rats (22 females per group) during the major organogenesis period at dose levels of 0 mg/kg (control), 500 mg/kg, 1000 mg/kg, and 2000 mg/kg to evaluate the potential toxicological effect on maternal function and embryo-fetal development. Results and conclusion: No test item-related changes in parameters for fertility, early embryonic development, maternal function, and embryo-fetal development were observed during the study period. On the basis of these results, it was concluded that KGC-HJ3 did not have toxicological potential on developmental and reproductive functions. Therefore, no observed adverse effect levels of KGC-HJ3 for fertility, early embryonic development, maternal function, and embryo-fetal development is considered to be at least 2000 mg/kg/day.

Toxicological Mechanism of Endocrine Disrupting Chemicals: Is Estrogen Receptor Involved?

  • Jeung, Eui-Bae;Choi, Kyung-Chul
    • Toxicological Research
    • /
    • v.26 no.4
    • /
    • pp.237-243
    • /
    • 2010
  • Endocrine disrupting chemicals (EDCs) have been shown to interfere with physiological systems, i.e., adversely affecting hormone balance (endocrine system), or disrupting normal function, in the female and male reproductive organs. Although endocrine disruption is a global concern for human health, its impact and significance and the screening strategy for detecting these synthetic or man-made chemicals are not clearly understood in female and male reproductive functions. Thus, in this review, we summarize the interference of environmental EDCs on reproductive development and function, and toxicological mechanism(s) of EDCs in in vitro and in vivo models of male and female reproductive system. In addition, this review highlights the effect of exposure to multiple EDCs on reproductive functions, and brings attention to their toxicological mechanism(s) through estrogen receptors.

Effects of Dietary Supplement Containing Melatonin on Reproductive Activity in Male Golden Hamsters

  • Choi, Donchan
    • Development and Reproduction
    • /
    • v.23 no.2
    • /
    • pp.101-110
    • /
    • 2019
  • Melatonin is a pineal hormone that is synthesized and released at night under the light and dark cycles of a day. Its effects on the reproductive activities have well been established by the administration through various routes in photoperiodic animals. It was also identified in plants and named phytomelatonin. The capacity of the phytomelatonin was investigated in this investigation whether it affects the reproductive function in male golden hamster. As expected, animals housed in long photoperiod (long photoperiod, LP>12.5 hours of lights in a day) had large testes and animals kept in short photoperiod ($$SP{\leq_-}12.5$$ hours of lights in a day) showed remarkably reduced testes. The dietary supplement with melatonin itself induced the complete involution of testes. Pistachios that were reported to contain a large amount of melatonin demonstrated no effects at all in male golden hamsters. These results suggest that dietary supplement containing melatonin-rich foodstuff used in this investigation may not be enough to affect the reproductive endocrine system in male golden hamsters.

Detrimental impact of cell phone radiation on sperm DNA integrity

  • Yeganeh Koohestanidehaghi;Mohammad Ali Khalili;Fatemeh Dehghanpour;Mohammad Sei
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.51 no.1
    • /
    • pp.13-19
    • /
    • 2024
  • Radiofrequency electromagnetic radiation (RF-EMR) from various sources may impact health due to the generation of frequency bands. Broad pulses emitted within frequency bands can be absorbed by cells, influencing their function. Numerous laboratory studies have demonstrated that mobile phones-generally the most widely used devices-can have harmful effects on sex cells, such as sperm and oocytes, by producing RF-EMR. Moreover, some research has indicated that RF-EMR generated by mobile phones can influence sperm parameters, including motility, morphology, viability, and (most critically) DNA structure. Consequently, RF-EMR can disrupt both sperm function and fertilization. However, other studies have reported that exposure of spermatozoa to RF-EMR does not affect the functional parameters or genetic structure of sperm. These conflicting results likely stem from differences among studies in the duration and exposure distance, as well as the species of animal used. This report was undertaken to review the existing research discussing the effects of RF-EMR on the DNA integrity of mammalian spermatozoa.