• Title/Summary/Keyword: Reproducibility of Images

Search Result 134, Processing Time 0.027 seconds

A Study of Thermoplastic Masks Deformation for Reducing Scattered Ray in Radiation Therapy (방사선치료용 열가소성 플라스틱 마스크의 산란선 감소를 위한 마스크 변형에 관한 연구)

  • Seong-Min, Lee;Jun-Young, Lee;Jae-Hyun, Kim;Kyeong-Hwan, Jeong;Jeong-Min, Seo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.63-69
    • /
    • 2023
  • In head and neck radiation therapy, the thermoplastic immobilization mask used for fixing the patient's posture and reproducibility causes scattered rays by being in close contact with the skin. To investigate the increase in skin dose due to the scattered rays generated from the immobilization mask, we evaluated dose reduction by decreasing contact between face skin and immobilization mask in computerized radiotherapy planning system with CT scanned images. In addition, to confirm the reproducibility problem of the setup due to the decrease in the cover area of immobilizing, the difference of each setup was confirmed using DRR and CT images. As the mask area covered for immobilizing was reduced, the dose on the skin surface significantly decreased, and it was confirmed that there was no significant difference in reproducibility even if the entire face was not covered and fixed.

The Study for Securing Reproducibility of Experimental Method in Papers of Spatial Image Evaluation - Focusing on the Papers of Domestic Journals - (공간 이미지 평가 연구에서 실험방식의 재현성 확보 방안 - 국내 학회지 게재 논문을 중심으로 -)

  • Mun, Jae-Eun;Kim, Jong-Ha
    • Korean Institute of Interior Design Journal
    • /
    • v.26 no.4
    • /
    • pp.93-102
    • /
    • 2017
  • The study of space through image evaluation has reached the stage of measuring the emotion with the development of IT technology and the advent of VR AR era. Many researches have been trying to evaluate the space and measure the emotion in objective form by providing various forms of spatial images such as photographs, sketches, and CG. In order for these studies to be used as objective data with logical relevance, it is necessary to describe in detail the method of collecting the data used in the experiment, the characteristics of the test procedure, and the method of analysis. This study is a basic study for constructing a database by systematically organizing the attributes, experimental methods and experimental procedures of subjects. From the viewpoint of securing the objectivity and reproducibility of the paper, we analyzed the spatial image evaluation process focusing on 1) evaluation subject, 2) experimental method, and 3) analysis standard. It is necessary to examine whether the object of evaluation and the form of image and the method of providing it meet the purpose of the study. In addition, the size and order of the image, the viewing time and the interval (break time) should be different according to the gender and group experiment and the individual test method.

A Study on Hyper-Reality of Fashion by Work of Art (예술작품을 통해 나타난 패션의 하이퍼리얼리티 연구)

  • Minah, Jung
    • Journal of Fashion Business
    • /
    • v.26 no.5
    • /
    • pp.76-90
    • /
    • 2022
  • The rapid growth and influence of digital technologies have had a profound effect on modern society. Companies and businesses can connect through SNS(social network service accounts). The importance of mass media empowers the creation of virtual images that are more realistic than time and space. Unlike traditional reproduction or imitation, the virtual images created in this way are reproduced in a form that lacks the original inspiration's essence. Jean Baudrillard described this phenomenon as the theory of simulation. Baudrillard argued that imitated simulated images replace reality. He stated that reality is lost under excessive images in modern society. In response, based on an understanding of the theory of hyper-reality that emerged through the late stages of the order of simulacre, this study aimed to analyze modern fashion's method of reproducing hyper-real images and investigate the method's characteristics. This study examined the characteristics of hyper-reality described by Baudrillard and analyzed the method of artistic expression of hyper-reality. Based on this method of expression, reproducibility, following the stages of image simulation, was derived. A specific case applied to fashion was analyzed, and based on the image reproduction method, specific characteristics of hyper-reality characteristics in fashion were obtained. Sixty-four collections were selected, out of which 155 images and 43 brands demonstrated the principles of image transformation.

The accuracy of linear measurements of maxillary and mandibular edentulous sites in conebeam computed tomography images with different fields of view and voxel sizes under simulated clinical conditions

  • Ganguly, Rumpa;Ramesh, Aruna;Pagni, Sarah
    • Imaging Science in Dentistry
    • /
    • v.46 no.2
    • /
    • pp.93-101
    • /
    • 2016
  • Purpose: The objective of this study was to investigate the effect of varying resolutions of cone-beam computed tomography images on the accuracy of linear measurements of edentulous areas in human cadaver heads. Intact cadaver heads were used to simulate a clinical situation. Materials and Methods: Fiduciary markers were placed in the edentulous areas of 4 intact embalmed cadaver heads. The heads were scanned with two different CBCT units using a large field of view ($13cm{\times}16cm$) and small field of view ($5cm{\times}8cm$) at varying voxel sizes (0.3 mm, 0.2 mm, and 0.16 mm). The ground truth was established with digital caliper measurements. The imaging measurements were then compared with caliper measurements to determine accuracy. Results: The Wilcoxon signed rank test revealed no statistically significant difference between the medians of the physical measurements obtained with calipers and the medians of the CBCT measurements. A comparison of accuracy among the different imaging protocols revealed no significant differences as determined by the Friedman test. The intraclass correlation coefficient was 0.961, indicating excellent reproducibility. Inter-observer variability was determined graphically with a Bland-Altman plot and by calculating the intraclass correlation coefficient. The Bland-Altman plot indicated very good reproducibility for smaller measurements but larger discrepancies with larger measurements. Conclusion: The CBCT-based linear measurements in the edentulous sites using different voxel sizes and FOVs are accurate compared with the direct caliper measurements of these sites. Higher resolution CBCT images with smaller voxel size did not result in greater accuracy of the linear measurements.

DIGITAL SUBTRACTION RADIOGRAPHIC EVALUATION OF THE STANDARDIZED PERIAPICAL INTRAORAL RADIOGRAPHS (규격화된 구내 표준 방사선사진의 계수 공제 방사선학적 평가)

  • Cho Bong-Hae;Nah Kyung-Soo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.23 no.1
    • /
    • pp.125-136
    • /
    • 1993
  • The geometrically standardized intraoral radiographs using 5 occlusal registration materials were taken serially from immediate, 1 day, 2, 4, 8, 12, and 16 weeks after making the bite blocks. And the resultant images were digitally subtracted using the immediately taken film as reference images. The qualities of those subtracted images were evaluated to check the degree of reproducibility of each impression material. The results were as follows: 1. The standard deviations of the grey scales of the overall subtracted images were 4.9 for Exal1ex, 7.2 for Pattern resin, 9.0 for Tooth Shade Acrylic, 12.2 for XCP only, 14.8 for Impregum. the lesser the standard deviation, the better the quality of the subtracted images. 2. The standard deviation of the grey scales of the overall subtracted images were grossly related to those of the localized horizontal line of interest. 3. Exaflex which showed the best subtracted image quality had 15 cases of straight, 14 cases of wave, 1 case of canyon shape. Impregum which showed the worst subtracted image quality had 4 cases of straight, 8 cases of wave, 18 cases of canyon shape respectively.

  • PDF

Formulation of a reference coordinate system of three-dimensional (3D) head & neck images: Part I. Reproducibility of 3D cephalometric landmarks (3차원 두부영상의 기준좌표계 설정을 위한 연구: 1부 CT영상에서 3차원 계측점의 재현성)

  • Park, Jae-Woo;Kim, Nam-Kug;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.35 no.5 s.112
    • /
    • pp.388-397
    • /
    • 2005
  • The purpose of this study was to redefine the cephalometric landmarks in three-dimensional (3D) images, which are used in orthodontic cephalometric radiography, and to evaluate the reproducibility of each landmark for 3D cephalometric analysis. Eighteen CT scans were taken at the Department of Diagnostic Radiology at Seoul National University Dental Hospital and manipulated with V works 4.0(Cybermed Inc., Seoul, Korea). The coordinate system was established using 7 reference points, with no more than 4 points on the same plane. These 7 points were generated as a volume model, the voxel size of which was 4 by 4 by 2 (threshold value=639). The cephalometric landmarks were selected at the multiplanar reformation (MPR) window on the volume mode of V works 4.0. The selected landmarks were exported to V surgery (Cybermed Inc., Seoul, Korea) for the calculation of coordinate values. All the data were taken twice with a lapse of 2 weeks by one investigator The reproducibility of each landmark was $0.17\~1.21mm$ in the x axis, $0.30\~1.53mm$. In the y axis, and $0.27\~1.81mm$ in the z axis. In all three axes, the range of error was similar. These error ranges were acceptable with regards to the pixel space and slice thickness. The most reproducible points were 1 points which were selected on the basis of the volume model. The least reproducible points were J points that were defined by sutures.

Evaluation of imaging reformation for root and pulp canal shapes of permanent teeth using a cone beam computed tomography (Cone beam형 전산화단층영상을 이용한 영구치 치근과 근관의 형태 평가)

  • Hong, Jong-Hyun;Kim, Gyu-Tae;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.37 no.3
    • /
    • pp.165-170
    • /
    • 2007
  • Purpose: To estimate the shape of root and pulp canal using a dental cone beam computed tomography (CBCT) and to evaluate the accuracy of imaging reformation. Materials and Methods: CBCT images were obtained with incisors, premolars, and molars as the destination by using PSR $9000N^{TM}$ Dental CT system (Asahi Roentgen Ind. Co., Ltd, Kyoto, Japan) and i-CAT (Imaging Sciences International, Inc, USA) cone beam CT unit that have different kind of detector and field of view, and compared these with the shape and the size of actual root and root canal. Results: When the measuring value of cone beam computed tomography concerning to each root's bucco-lingual diameter and mesio-distal diameter was compared with the value of the actual root, it reveals an error range $-0.49{\sim}+0.63$ mm at PSR900N and $-0.97{\sim}+1.14$ mm at i-CAT (P>0.05). It was possible to identify and measure PSR$9000N^{TM}$ Dental CT system to the limit $0.48{\pm}0.06mm$ (P>0.05) and i-CAT CBCT to the limit $0.86{\pm}0.09mm$ (P<0.05) on estimating the size and the shape of root canal. Two kinds of CBCT images revealed the useful reproducibility to estimate the shape of root, but there was the difference to estimate the shape of root according to apparatus. The reproducibility of root shape in the image of three-dimensions at PSR 900N is low such as 0.65 mm in a case of minute root canal. Conclusions: CBCT images revealed higher accuracy of the imaging reformation for root and pulp and clinically CBCT is a useful diagnostic tool for the assessment of root and canal. However, there are different qualities of imaging reformation according to CBCT apparatus and limitation of reproducibility for minute root canals.

  • PDF

Patients Setup Verification Tool for RT (PSVTS) : DRR, Simulation, Portal and Digital images (방사선치료 시 환자자세 검증을 위한 분석용 도구 개발)

  • Lee Suk;Seong Jinsil;Kwon Soo I1;Chu Sung Sil;Lee Chang Geol;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.21 no.1
    • /
    • pp.100-106
    • /
    • 2003
  • Purpose : To develop a patients' setup verification tool (PSVT) to verify the alignment of the machine and the target isocenters, and the reproduclbility of patients' setup for three dimensional conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT). The utilization of this system is evaluated through phantom and patient case studies. Materials and methods : We developed and clinically tested a new method for patients' setup verification, using digitally reconstructed radiography (DRR), simulation, porial and digital images. The PSVT system was networked to a Pentium PC for the transmission of the acquired images to the PC for analysis. To verify the alignment of the machine and target isocenters, orthogonal pairs of simulation images were used as verification images. Errors in the isocenter alignment were measured by comparing the verification images with DRR of CT Images. Orthogonal films were taken of all the patients once a week. These verification films were compared with the DRR were used for the treatment setup. By performing this procedure every treatment, using humanoid phantom and patient cases, the errors of localization can be analyzed, with adjustments made from the translation. The reproducibility of the patients' setup was verified using portal and digital images. Results : The PSVT system was developed to verify the alignment of the machine and the target isocenters, and the reproducibility of the patients' setup for 3DCRT and IMRT. The results show that the localization errors are 0.8$\pm$0.2 mm (AP) and 1.0$\pm$0.3 mm (Lateral) in the cases relating to the brain and 1.1$\pm$0.5 mm (AP) and 1.0$\pm$0.6 mm (Lateral) in the cases relating to the pelvis. The reproducibility of the patients' setup was verified by visualization, using real-time image acquisition, leading to the practical utilization of our software Conclusions : A PSVT system was developed for the verification of the alignment between machine and the target isocenters, and the reproduclbility of the patients' setup in 3DCRT and IMRT. With adjustment of the completed GUI-based algorithm, and a good quality DRR image, our software may be used for clinical applications.

Color Image Acquired by the Multispectral Near-IR LED Lights (다중 파장 근적외선 LED조명에 의한 컬러영상 획득)

  • Kim, Ari;Kim, Hong-Suk;Park, Youngsik;Park, Seung-Ok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • A system which provides multispectral near-IR and visible gray images of objects is constructed and an algorithm is derived to acquire a natural color image of objects from the gray images. A color image of 24 color patches is obtained by recovering their CIE (International Commission on Illumination) LAB color coordinates $L^*$, $a^*$, $b^*$ from their gray images using the algorithm based on polynomial regression. The system is composed of a custom-designed LED illuminator emitting multispectral near-IR illuminations, fluorescent lamps and a monochrome digital camera. Color reproducibility of the algorithm is estimated in CIELAB color difference ${\Delta}E^*_{ab}$. And as a result, if yellow and magenta color patches with around 10 ${\Delta}E^*_{ab}$ are disregarded, the average ${\Delta}E^*_{ab}$ is 2.9, and this value is within the acceptability tolerance for quality evaluation for digital color complex image.

Comparative study on quality of scanned images from varying materials and surface conditions of standardized model for dental scanner evaluation (치과용 스캐너 평가를 위한 국제표준모델의 재료 및 표면 상태에 따른 스캔 영상 결과물 비교 연구)

  • Park, Ju-Hee;Seol, Jeong-Hwan;Lee, Jun Jae;Lee, Seung-Pyo;Lim, Young-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.2
    • /
    • pp.104-115
    • /
    • 2018
  • Purpose: The purpose of this study is to evaluate the image acquisition ability of intraoral scanners by analyzing the comprehensiveness of scanned images from standardized model, and to identify problems of the model. Materials and Methods: Cast models and 3D-printed models were prepared according to international standards set by ISO12836 and ANSI/ADA no. 132, which were then scanned by model scanner and two different intraoral scanners (TRIOS3 and CS3500). The image acquisition performance of the scanners was classified into three grades, and the study was repeated with varying surface conditions of the models. Results: Model scanner produced the most accurate images in all models. Meanwhile, CS3500 showed good image reproducibility for angled structures and TRIOS3 showed good image reproducibility for rounded structures. As for model ingredients, improved plaster model best reproduced scan images regardless of the type of scanner used. When limited to 3D-printed model, powdered surface condition resulted in higher image quality. Conclusion: When scanning structures beyond FOV (field of view) in standardized models (following ISO12836 and ANSI/ADA 132), lack of reference points to help distinguish different faces confuses the scanning and matching process, resulting in inaccurate display of images. These results imply the need to develop a new standard model not confined to simple pattern repetition and symmetric structure.