• Title/Summary/Keyword: Representations in chemistry

Search Result 18, Processing Time 0.019 seconds

Analysis of Problems in the Submicro Representations of Acid·Base Models in Chemistry I and II Textbooks of the 2009 & 2015 Revised Curricula (2009 개정교육과정과 2015 개정교육과정의 화학 I 및 화학 II 교과서에서 산·염기 모델의 준미시적 표상에 대한 문제점 분석)

  • Park, Chul-Yong;Won, Jeong-Ae;Kim, Sungki;Choi, Hee;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.1
    • /
    • pp.19-29
    • /
    • 2020
  • We analyzed the representations of acid-base models in 4 kinds of Chemistry I and 4 kinds of Chemistry II textbooks of the 2009 revised curriculum, and 9 kinds of Chemistry I textbooks and 6 kinds of chemistry II textbooks of the 2015 revised curriculum in this study. The problems of the textbook were divided into the problems of definitions and the representations of the logical thinking. As a result of the study, the lack of the concept of chemical equilibrium had a problem with the representation of reversible reactions in the definition of the Brønsted-Lowry model in the Chemistry I textbooks of 2009 revised curriculum, it also appeared to persist in Chemistry I textbooks of 2015 revised curriculum which contains the concept of chemical equilibrium. The representations of logical thinking were related to particle kinds of conservation logic, combinational logic, particle number conservation logic, and proportion logic. There were few problems related to representation of logical thinking in Chemistry I textbook in 2009 revision curriculum, but more problems of representations related to logics are presented in Chemistry I textbooks in 2015 revision curriculum. Therefore, as the curriculum is revised, the representations of chemistry textbooks related to acid and base models need to be changed in a way that can help students' understanding.

Analysis of Students Use of Multimodal Representations in a Science Formative Assessment (Assessing Pupils' Progress, APP) Task in the UK

  • Cho, Hye Sook;Nam, Jeonghee
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.211-217
    • /
    • 2017
  • The purpose of this study was to examine UK students' use of multimodal representations in science. Students were asked to explain their understandings of the scientific concept and presentation of the multimodal representations in a science Assessing Pupils' Progress (APP) task. Participants of this study were fifty-four Year 7 students taught by the same teacher. Students from one class (27 students) were assigned to the experimental group, and then they received instruction encouraging the using of multimodal representations as evidences to support students' claims. One class (27 students) was assigned to the control group and they received instruction with traditional teaching methods. Both groups performed an APP task for assessment. The samples of APP assessments produced by students both from the experimental and control groups were analyzed using an analysis framework of multimodal representations, embeddedness in evidence and understanding of scientific concepts. Data analysis indicated that the students in the experimental group performed better than that of the control group on embeddedness of multimodal representations in the APP task. In addition, there was a significant difference between the two groups in the evaluation of understand of the scientific concepts.

The Impact of the Science Writing Heuristic Approach on Students' Use of Multiple Representations in Science Writing and Students' Recognition about Multiple Representations (탐구적 과학 글쓰기 활동이 학생들의 글쓰기에서 나타난 다중 표상에 미치는 영향 및 다중 표상에 대한 학생들의 인식)

  • Nam, Jeonghee;Park, Jiyeon;Lee, Dongwon
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.6
    • /
    • pp.759-767
    • /
    • 2012
  • The purpose of this study was to examine the impact of Science Writing Heuristic (SWH) on multiple representations in students' writing and to survey experimental group students' recognition about the use of multiple representations. For this study, Participants of this study were 158 students in 7th grade. 94 students were assigned to the experimental group and 64 students were assigned to the comparative group. The experimental group showed significantly higher mean score than comparative group at utilizing multiple representation in summary writing. Interview analysis indicated that all students who participated in interviews, regardless of solid multi-modal competency, recognized that use of multiple representations with appropriate explanations enable to communicate science information persuasively.

Assessing Students' Molecular-Level Representations of Solution Chemistry

  • Lee, Soo-Young
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.8
    • /
    • pp.677-692
    • /
    • 2007
  • In this study, university students were provided with repeated opportunities to represent their ideas graphically, and to examined via their drawings the extent to which they could visualize macroscopic phenomena microscopically. These drawings provided insight into the students' basic understanding of solution chemistry, revealing three conceptual models: the Undifferentiated Symbolic Model, the Particulate Model, and the Symbolic Ionic Model. Generally speaking, students who had poor conceptual understanding tended to exhibit the Undifferentiated Symbolic Model, whereas students with deeper understanding tended to employ the Symbolic Ionic Model. Students' conceptual comprehension was predictable from their graphical representations, which better elucidated what they actually comprehended about the phenomena, as opposed to their ambiguous verbal descriptions alone. The results of this study demonstrated a lack of development in university students' conceptions of solutions. Their weakness in understanding at the molecular-level became more obvious when they were asked to represent their ideas in drawings. Few students exhibited expert knowledge, and several common misconceptions were found, which indicated typical difficulties students have perceiving common phenomena at the molecular level. The findings of this study illustrate how eliciting graphical representations can be used to assess students' conceptual understandings.

An Analysis of the Uses of External Representations in Matter Units of 7th-Grade Science Digital Textbooks Developed Under the 2015 Revised National Curriculum (2015 개정 교육과정에 따른 중학교 1학년 디지털교과서의 물질 단원에서 나타난 외적 표상의 활용 실태 분석)

  • Song, Nayoon;Hong, Juyeon;Noh, Taehee
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.6
    • /
    • pp.416-428
    • /
    • 2020
  • This study analyzed the uses of external representations presented in the matter units of the 7th-grade science digital textbooks developed under the 2015 revised national curriculum. The level, form, presentation, and interactivity of external representations presented in 5 types of digital textbooks were analyzed. As for the level, the macroscopic level of representations was mainly presented. The macroscopic level and microscopic level of representations were presented together in the particle description. As for the form, visual-verbal and visual-nonverbal representations were usually presented across the board. Very few audial-verbal and audial-nonverbal representations were presented. Visual-verbal and audial-verbal representations were mostly presented in formal form, and visual-nonverbal representations were mostly presented in illustration without movement. The presentation of representations was analyzed in three aspects. First, visual-verbal and visual-nonverbal representations were mainly presented together and none of audial-verbal and visual-nonverbal representations were presented together. When the representations of the audial-verbal, visual-nonverbal, and visual-verbal were presented together, some of the information presented in audial-verbal representations was repeatedly presented in the visual-verbal representations. Second, audial-nonverbal representations not related to learning content were presented along with other representations. Third, there were few cases of arranging visual-verbal and visual-nonverbal representations on the next pages. Audialverbal and visual-nonverbal representations were always presented synchronized. As for the interactivity, the manipulation level was mainly presented in the main area, and the feedback level was mainly presented in the activity area. The adaptation level and the communication level of interactivity were presented very few. Based on the results, the implications for the direction of constructing digital textbooks were discussed.

An Analysis of the Uses of Visual Representations of Particles in the Middle School Science Textbooks in Matter Units (중학교 과학 교과서 물질 단원에 제시된 시각적 입자 표상의 활용 방식 분석)

  • Yousun Jeon;Sunghoon Kim;Taehee Noh;Sukjin Kang
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.5
    • /
    • pp.353-361
    • /
    • 2023
  • This study analyzed the uses of visual representations of particles in the matter units of the middle school science textbooks developed under the 2015 Revised National Curriculum. The material units in four textbooks were divided into explanation, inquiry, and evaluation sections, and visual representations of particles presented in the science textbooks were analyzed by the use type, the activity type, and the level of activity. In the explanation section, the visual representations of particles were mainly presented in the auxiliary use type, and in the inquiry and evaluation section, they were mainly presented in a direct use type. In terms of the activity types of the direct use of visual representations of particles, the interpreting activity was mainly presented in the explanation and evaluation sections, while the generating activity and completing activity were presented in relatively higher proportion in the inquiry section than the other two sections. In terms of activity level, identifying was the most common activity level in the explanation section, and inferring was the most common activity level in the inquiry and evaluation sections. Based on these results, the implications for the presentation and uses of visual representations of particles in science textbooks are discussed.

The Impact of Argumentation-based General Chemistry Laboratory Programs on Multimodal Representation and Embeddedness in University Students' Science Writing (논의가 강조된 일반화학실험이 대학생들의 글쓰기에서 나타난 다중 표상 및 다중 표상의 내재성에 미치는 영향)

  • Nam, Jeong-Hee;Cho, Dong-Won;Lee, Hye-Sook
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.6
    • /
    • pp.931-941
    • /
    • 2011
  • This study aimed to examine the effects of argument-based chemistry laboratory investigations using the Science Writing Heuristic (SWH) approach on students' use and embedding of multimodal representations in summary writing. Participants of this study were thirty-nine freshman students majoring in science education at a National University in Korea. Argument-based chemistry laboratory investigations using the SWH approach were implemented for twenty-three students enrolled in one cohort, and the traditional chemistry laboratory teaching was implemented for 16 students enrolled in the other cohort. Summary writing samples were collected from students before and after the implementation. Summary writing samples produced by students were examined using an analysis framework for examining the use and embeddedness of multimodal representations. Summary writing was categorized into one of verbal mode, symbolic mode, and visual mode. With regard to the embedding of multi-modal representations, summary writing samples were analyzed in terms of 'constructing understanding,' 'integrating multiple modes,' 'providing valid claims and evidence,' and 'representing multiple modes.' Data analysis shows that the students of the SWH group were better at utilizing and embedding multimodal representations in summary writing as they provided evidence supporting their claims. This study provides important implications on pre-service science teacher education.

The Effects of the Prescribed Instructional Strategy for Reducing Students' Connecting Errors in Learning Chemistry Concepts with Multiple External Representations (다중 표상을 활용한 화학 개념 학습에서 학생들의 연계 오류 감소를 위한 처방적인 교수 전략의 효과)

  • Kang, Hun-Sik;Kim, You-Jung;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.6
    • /
    • pp.675-684
    • /
    • 2008
  • This study investigated the effects of the prescribed instructional strategy for reducing students' connecting errors in learning chemistry concepts with multiple external representations by students' field independence-dependence. Seventh graders (N=126) at a coed middle school were assigned to control and treatment groups. The students learned "Boyle's Law" and "Charles's Law" for two class periods. Results revealed that the students in the treatment group scored significantly higher than those in the control group in a conception test. The scores of the treatment group were significantly higher than those of the control group in a motivational learning test, especially in 'attention' of the test. However, there was no significant interaction between the instruction and students' field independence-dependence in the two tests. Most students in the treatment group perceived the instruction positively in cognitive and motivational aspects.

Analysis of Connection Errors by Students' Field Independence-Dependence in Learning Chemistry Concepts with Multiple External Representations (다중 표상을 활용한 화학 개념 학습에서 학생들의 장독립성-장의존성에 따른 연계 오류 분석)

  • Kang, Hun-Sik;Lee, Jong-Hyun;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.5
    • /
    • pp.471-481
    • /
    • 2008
  • This study investigated connecting errors by students' field independence-dependence in learning chemistry concepts with multiple external representations in current science textbooks. Seventh graders (N=196) at a middle school were assigned to the BL and CL groups, which were respectively taught "Boyle's Law" and "Charles's Law." A field independence-dependence test was administered. After learning the target concept with text and picture emphasizing the particulate nature of matter, a connecting test was also administered. Five types of connecting errors were identified: Insufficient connection, misconnection, rash connection, impossible connection, and failing to connect. 'Failing to connect,' 'Misconnection,' and 'Rash connection' were found to be the frequent types of connecting errors regardless of the target concepts. The frequencies and percentages of the types of connecting errors were not significantly different between the field independent and field dependent students. Educational implications of these findings are discussed.