본 논문에서는 다항식 보간법의 일종인 이동최소자승법(Moving least squares, MLS)을 네트워크로 학습하여, Divergence-constrained MLS 벡터장을 효율적으로 표현하는 방법을 제안한다. 벡터장을 구성하기 위해 MLS는 스칼라가 아닌 벡터 보간을 해야 하므로 행렬과 벡터의 크기가 더 커지며, 이는 계산량이 커짐을 나타낸다. 고차 보간(High-order interpolation)이 가능한 특징은 장점이 되지만, 계산량이 매우 크기 때문에 시뮬레이션에는 활용이 어렵다. Divergence-constrained MLS를 유체 시뮬레이션에 적용한 경우가 있지만, 실제로 슈퍼컴퓨터(Supercomputer)를 해야 장면 제작이 가능하므로 효용성이 떨어진다. 본 논문에서는 이러한 문제를 해결하기 위해 네트워크 학습을 통한 Divergence-constrained MLS 벡터장을 표현할 수 있는 결과를 보여준다.
비음수 행렬 분해(Nonnegative Matrix Factorization, NMF) 기법은 사전행렬과 크기성분을 번갈아 가며 업데이트 하면서 구하는 방법이며 직관적 해석 및 구현의 용이성으로 인해 중첩음향이벤트 분리 및 검출방법으로 널리 활용되었다. 하지만 비음수 행렬 분해의 고유한 특성인 부분기반표현(part-based representation)으로 인해 하나의 음향 이벤트를 구성 하는 사전(dictionary)의 파편화 현상이 발생하고, 다른 음향이벤트와 중복되는 사전이 생성되어 결과적으로 분리, 검출 성능의 저하 문제가 발생한다. 본 논문에서는 사전 획득 단계의 부분기반표현에 의한 문제를 해소하기 위해 K-Singular Value Decomposition(K-SVD)을 사용하여 사전을 획득하고, 음향이벤트 검출 단계 에서는 기존 비음수 행렬 분해 기법을 이용하여 크기를 획득 한다. 제안하는 방식을 통해 비음수 행렬 분해 기반의 사전을 사용하는 경우보다 중첩음향이벤트 검출 성능이 개선되는 것을 확인하였다.
본 논문에서는 자동표정인식을 위하여 얼굴 이미지 배열의 가운데 이미지를 예측하는 새롭고 간단한 자기주도학습 방법을 제안한다. 자동표정인식은 딥러닝 모델을 통해 높은 성능을 달성할 수 있으나 일반적으로 큰 비용과 시간이 투자된 대용량의 데이터 세트가 필요하고, 데이터 세트의 크기와 알고리즘의 성능이 비례한다. 제안하는 방법은 추가적인 데이터 세트 구축 없이 기존의 데이터 세트를 활용하여 자기주도학습을 통해 얼굴의 잠재적인 심층표현방법을 학습하고 학습된 파라미터를 전이시켜 자동표정인식의 성능을 향상한다. 제안한 방법은 CK+와 AFEW 8.0 두가지 데이터 세트에 대하여 높은 성능 향상을 보여주었고, 간단한 방법으로 큰 효과를 얻을 수 있음을 보여주었다.
의료 데이터 분야는 레코드 수는 많지만 응답값이 없기 때문에 인공지능을 적극적으로 활용하지 못하고 있다. 이러한 문제점을 해결하기 위해 자기지도학습(Self-Supervised learning)을 의료 분야에 적용하는 연구가 등장하고 있다. 자기지도학습은 model이 레이블링이 없는 데이터의 semantic 표현을 이해할 수 있도록 pretext task와 supervision을 학습한다. 그러나, 자기지도학습의 성능은 pretext task로 학습한 표현에 의존하므로 데이터의 특성에 적합한 pretext task를 정의할 필요가 있다. 따라서 본 논문에서는 의학 데이터 중 활용도가 높은 x-ray 이미지에 적용할 수 있는 pretext task를 실험적으로 탐색하고 그 결과를 분석한다.
이 연구에서는 물질의 입자적 성질이 강조되는 화학 개념 학습에서 학생들에게 제공되는 다양한 외적 표상들 간의 연계와 통합을 촉진시키는 방법으로서의 그리기와 쓰기의 효과에 대해 알아보았다. 남녀공학 중학교 1학년 224명을 통제 집단, 그리기 집단, 쓰기 집단으로 배치한 후,'보일의 법칙'과 '샤를의 법칙'에 대하여 2차시 동안 수업을 하였다. 세 집단 모두 거시적인 현상을 실험을 통해 관찰하게 한 후, 통제 집단 에서는 시각적 정보와 언어적 정보를 동시에 제공하여 학습하게 하였고, 그리기 집단에서는 제공된 언어적 정보에 대한 정신 모형을 그림으로 그리게 한 후, 이를 시각적 정보와 비교하게 하였으며, 쓰기 집단에서는 시각적 정보에 대한 정신 모형을 글로 쓰게 한 후, 이를 언어적 정보와 비교하게 하였다. 이원 공변량 분석 결과, 쓰기 집단의 개념 이해도 점수가 통제 집단보다 유의미하게 높았으며, 그리기 집단은 통제 집단보다 통계적으로 높은 경향성을 보였다. 개념 이해도 점수에서 수업 처치와 공간 시각화 능력 사이의 상호 작용 효과는 없었다. 학생들의 수업 인식 검사 결과에서는 대부분의 학생들이 쓰기와 그리기 활동을 통해 개념 이해가 잘 되었다고 응답하였으며, 일부 학생들은 쓰기와 그리기가 재미있었다고 응답하기도 하였다. 이에 대한 교육학적 함의를 논의하였다.
음운인식은 구어의 기본 단위인 말소리를 지각하고 조작하는 능력으로, 이것은 이후 문자습득에 영향을 주는 것으로 알려져 있다. 그러나 몇몇 연구에서는 문자의 기본 단위인 철자에 대한 지식이 반대로 음운인식에 영향을 준다고 주장한다. 본 연구에서는 5, 6세 아동을 대상으로 철자표상 과제와 말소리분절 과제를 실시한 후, 두 과제 수행력 간 상관관계, 철자표상 상위집단과 하위집단 간 말소리분절 과제의 정반응 점수, 그리고 오류유형을 비교 분석하였다. 그 결과 철자표상 과제와 말소리분절 과제 수행력은 자소-음소 일치 단어에서는 양의 상관, 불일치 단어에서는 음의 상관을 보였다. 자소-음소 일치 단어의 경우 두 집단 간 말소리분절 수행력에 차이가 없었지만, 자소-음소 불일치 단어의 경우 하위집단이 상위집단보다 말소리분절 수행력이 유의하게 좋았다. 두 집단 모두에서 가장 많이 나타난 오류는 철자화 오류였고, 이러한 경향은 상위집단에서 두드러졌다. 본 연구는 철자를 배우기 시작한 직후부터는 아동들이 말소리분절 과제 수행에 철자지식을 활용하고 있음을 시사한다.
수학적 과정에서 나타나는 언어 구문론적 표현 체계와 정의적 표현 체계 사이에는 긴밀한 상호 작용이 이루어진다. 한편, 수학적 개념 체계도 본질적으로 은유적이므로 언어적 표현을 통해 나타나는 수학적 개념 구조에 대한 분석은 수학 학습에 작용하는 인지 정의적 장애 요인의 근원을 밝히는데 도움이 될 수 있다. 이에 본 연구에서는 수학 영재아의 문제해결 프로토콜을 인지언어와 메타정의의 관점에서 분석하여 텍스트 및 은유의 기능적 특성과 메타정의의 기능적 특성 사이의 관계성을 파악하였다. 그 결과 문제해결의 성공 여부에 따라 수학 영재아의 인지적, 정의적 특성이 반영된 행위의 양상이 서로 다르게 나타났다. 성공적이지 못한 문제해결의 경우에는 성공적인 경우에 비해 내부 표현 체계로서의 은유를 활용하는 행위가 상대적으로 빈번하게 나타났다. 또한 은유의 인지언어학적 측면이 문제해결에 중요하게 작용하면서 동시에 은유라는 외적 표현에는 메타정의적 속성이 긴밀하게 관련되어 나타났다.
부분 기반 영상 표현(part-based image representation)에서는 영상의 부분적인 모습을 기저 벡터로 표현하고 기저 벡터의 선형 조합으로 영상을 분해하며, 이 때 기저 벡터의 계수가 곧 물체의 부분적인 특징을 의미하게 된다. 본 논문에는 부분 기반 영상 표현 기법인 비음수 행렬 분해(non-negative matrix factorization, NMF)를 이용하여 얼굴 영상을 표현하고 신경망 기법을 적용하여 가려진 얼굴을 인식하는 얼굴 인식을 제안한다. 표준 비음수 행렬 분해, 투영 경사 비음수 행렬 분해, 직교 비음수 행렬 분해를 이용하여 얼굴 영상을 표현하였고, 각 기법의 성능을 비교하였다. 인식기로는 학습벡터양자화 신경망을 사용하였으며, 인식기에서의 거리 척도로는 유클리디언 거리를 사용하였다. 실험 결과, 전통적인 얼굴 인식 방법에 비하여 제안한 기법이 가려진 얼굴 인식에 보다 강인함을 보인다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권7호
/
pp.2390-2406
/
2022
Scene text recognition has important application value and attracted the interest of plenty of researchers. At present, many methods have achieved good results, but most of the existing approaches attempt to improve the performance of scene text recognition from the image level. They have a good effect on reading regular scene texts. However, there are still many obstacles to recognizing text on low-quality images such as curved, occlusion, and blur. This exacerbates the difficulty of feature extraction because the image quality is uneven. In addition, the results of model testing are highly dependent on training data, so there is still room for improvement in scene text recognition methods. In this work, we present a natural scene text recognizer to improve the recognition performance from the feature level, which contains feature representation and feature enhancement. In terms of feature representation, we propose an efficient feature extractor combined with Representative Batch Normalization and ResNet. It reduces the dependence of the model on training data and improves the feature representation ability of different instances. In terms of feature enhancement, we use a feature enhancement network to expand the receptive field of feature maps, so that feature maps contain rich feature information. Enhanced feature representation capability helps to improve the recognition performance of the model. We conducted experiments on 7 benchmarks, which shows that this method is highly competitive in recognizing both regular and irregular texts. The method achieved top1 recognition accuracy on four benchmarks of IC03, IC13, IC15, and SVTP.
멀티 뷰 기법은 데이터를 다양한 관점에서 보려는 접근 방법이며 데이터의 다양한 정보를 통합하여 사용하려는 시도이다. 최근 많은 연구가 진행되고 있는 멀티 뷰 기법에서는 단일 뷰 만을 이용하여 모형을 학습시켰을 때 보다 좋은 성과를 보인 경우가 많았다. 멀티 뷰 기법에서 딥 러닝 기법의 도입으로 이미지, 텍스트, 음성, 영상 등 다양한 분야에서 좋은 성과를 보였다. 본 연구에서는 멀티 뷰 기법이 인간 행동 인식, 의학, 정보 검색, 표정 인식 분야에서 직면한 여러 가지 문제들을 어떻게 해결하고 있는지 소개하였다. 또한 전통적인 멀티 뷰 기법들을 데이터 차원, 분류기 차원, 표현 간의 통합으로 분류하여 멀티 뷰 기법의 데이터 통합 원리를 리뷰 하였다. 마지막으로 딥 러닝 기법 중 가장 범용적으로 사용되고 있는 CNN, RNN, RBM, Autoencoder, GAN 등이 멀티 뷰 기법에 어떻게 응용되고 있는지를 살펴보았다. 이때 CNN, RNN 기반 학습 모형을 지도학습 기법으로, RBM, Autoencoder, GAN 기반 학습 모형을 비지도 학습 기법으로 분류하여 이 방법들이 대한 이해를 돕고자 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.