• Title/Summary/Keyword: Representation Learning

Search Result 498, Processing Time 0.03 seconds

A Case Study of the PCK of Middle School Science Teachers on the Mendelian Genetics (멘델 유전에 대한 중학교 과학교사의 PCK 사례 연구)

  • Song, Mi-Ran;Kim, Sung-Ha
    • Journal of Science Education
    • /
    • v.38 no.3
    • /
    • pp.718-736
    • /
    • 2014
  • This study was intended to determine PCK of the middle school science teachers on Mendelian genetics and factors influenced to form their PCKs. Two science teachers with biology major with a teaching experience over 5 years were chosen as the subject. Data were collected by class observation, semi-structured interview, teacher questionnaire survey, Content Representation and Pedagogical and Professional-experience Repertoire. The collected data were analyzed based on Magnusson's PCK for science teaching consisting of five components: (a) the orientation toward teaching science, (b) the knowledge of science curriculum, (c) the knowledge of students' understanding, (d) the knowledge of assessment, and (e) the knowledge and belief in the instructional strategies to teach science. Teachers could have the orientation toward teaching science served as an assisting role to support students' abilities. Both subject teachers seemed to focus on giving lectures. Their efforts to improve students' exploration methods and abilities were not expressed enough in their real classes and they found that students struggled to understand Mendelian genetics. Therefore, they should have explained them in an easier way and worked harder to make their students understood accurately and applied basic and advanced concepts of Mendelian genetics. They found students' preconception and misconception regarding Mendelian genetics and wished to enhance their learning effects by various teaching strategies such as correcting misconception, adding the history of science and simply assessing students' affirmative domains. It was also found that factors influenced to form PCK regarding Mendelian genetics by both teachers were as follows: teacher's personality and endeavor, textbooks and guidance books, schools and their circumstances, teaching experience, experience as a learner, interaction with their colleagues, and university curriculum. Both teachers said that it was important for teachers to make every efforts to give better classes.

  • PDF

A Study on the Effects of Storytelling-linked Integrated Math Programs on Young Children's Mathematical Disposition and Self-efficacy (스토리텔링 통합 수 프로그램이 유아의 수학적 성향 및 자기효능감에 미치는 영향)

  • Jung, Dan Be;Kim, Ji Eun
    • Korean Journal of Childcare and Education
    • /
    • v.11 no.2
    • /
    • pp.151-175
    • /
    • 2015
  • This study configured an integrated math program in which young children can directly participate through storytelling, a teaching technique that has recently earned great popularity. The purpose of the study is to have a positive effect on their mathematical disposition and self-efficacy through the adoption of this program. The program consists of the following five themes: 'understanding of the basic concept of numbers and calculation', 'understanding of the basic concept of space and figure', 'basic measurement', 'understanding of rules' and 'basic data collection and result representation'. The specific activities for each theme planned and executed according to a detailed plan were designed for 20 classes including integrated activities such as story sharing, fine arts and games. The study's participants were 48 five-year old children. The result of the research was that the experimental group's mathematical disposition and self-efficacy score was significantly higher than the control group. The Storytelling-Integrated Math Program was effective in young children's cultivating mathematical disposition and improving self-efficacy. Considering the reality that there has been some confusion and difficulty in carrying out storytelling math and an integrated math program based on the NURI curriculum, it appears that this study could provide a specific and effective teaching-learning program to teachers who want to introduce a program like this.g

Analysis of Preservice Chemistry Teachers' Modelling Ability and Perceptions in Science Writing for Audiences of General Chemistry Experiment Using Argument-based Modeling Strategy (논의-기반 모델링 전략을 이용한 일반화학실험에서 글쓰기 대상에 따른 예비화학교사들의 모델링 능력 및 모델링에 대한 인식 분석)

  • Cho, Hye Sook;Kim, HanYoung;Kang, Eugene;Nam, Jeonghee
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.459-472
    • /
    • 2019
  • The purpose of this study was to investigate the effect of science writing for different audiences on preservice chemistry teachers' chemistry concept understanding and modeling ability in general chemistry experiment activities using Argument-based Modeling (AbM) strategy. And we also examined preservice chemistry teachers' perceptions of modeling in different audience groups. The participants of the study were 18 university students in the first grade of preservice chemistry teachers taking a general chemistry experiment course. They completed eleven topics of general chemistry experiment using argument-based modeling strategy. The understanding of chemistry concept was compared with the effect size of pre- and post-chemistry concept test scores. To find out modeling ability, we analyzed level of model by each preservice chemistry teacher. Analytical framework for the modeling ability was composed of three elements, explanation, representation, and communication. The questionnaire was conducted to check up on preservice chemistry teacher's recognition of modeling. The result of analyzing the effect of modeling for different audience on the understanding of chemistry concept and modeling ability, the preservice chemistry teachers' were found to be more effective when the level of audience was low. There was no difference in the recognition of modeling between the groups for audience. However, we could confirm that the responses of preservice chemistry teachers are changed in concrete when they have an experience in succession on modeling.

A Performance Study of Gaussian Radial Basis Function Model for the Monk's Problems (Monk's Problem에 관한 가우시안 RBF 모델의 성능 고찰)

  • Shin, Mi-Young;Park, Joon-Goo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.6 s.312
    • /
    • pp.34-42
    • /
    • 2006
  • As art analytic method to uncover interesting patterns hidden under a large volume of data, data mining research has been actively done so far in various fields. However, current state-of-the-arts in data mining research have several challenging problems such as being too ad-hoc. The existing techniques are mostly the ones designed for individual problems, so there is no unifying theory applicable for more general data mining problems. In this paper, we address the problem of classification, which is one of significant data mining tasks. Specifically, our objective is to evaluate radial basis function (RBF) model for classification tasks and investigate its usefulness. For evaluation, we analyze the popular Monk's problems which are well-known datasets in data mining research. First, we develop RBF models by using the representational capacity based learning algorithm, and then perform a comparative assessment of the results with other models generated by the existing techniques. Through a variety of experiments, it is empirically shown that the RBF model has not only the superior performance on the Monk's problems but also its modeling process can be controlled in a systematic way, so the RBF model with RC-based algorithm might be a good candidate to handle the current ad-hoc problem.

Graph Interpretation Ability and Perception of High School Students and Preservice Secondary Teachers in Earth Science (고등학생들과 예비교사들의 지구과학 그래프 해석 능력 및 인식)

  • Lee, Jin-Bong;Lee, Ki-Young;Park, Young-Shin
    • Journal of the Korean earth science society
    • /
    • v.31 no.4
    • /
    • pp.378-391
    • /
    • 2010
  • The purpose of this study was to investigate the graph interpretation ability and perception of high school students and preservice secondary teachers in Earth science. We developed two different instruments; one was a graph interpretation ability inventory that consists of 9 graph types with 18 items, and the other one is two questionnaires to explore the participants' perception about Earth science-related graph. The results of this study are as follows: High school students and preservice secondary teachers demonstrated their remarkable ability in interpreting a line graph, but showed their limited ability with the graph of overlapped and directional change, which means the graph interpretation ability was affected by a graph type; two groups participated in this study revealed a considerable difference in the graph interpretation ability depending on the grade level; preservice teachers were superior to high school students in discriminating two graphs, the representation method, which are different with the same topic; and many participants in both groups considered that the property of Earth science graph was considerably different from that of other science subjects, especially in directional change graph, scatter graph, contour map, and domain graph. The results suggest that the effective graph instruction strategies be developed in Earth science learning.

Secondary Science Teachers' Perception about and Actual Use of Visual Representations in the Teaching of Electromagnetism (중등 전자기 수업에서 사용하는 시각적 표상에 대한 교사 인식 및 활용 실태)

  • Yoon, Hye-Gyoung;Jo, Kwanghee;Jho, Hunkoog
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.2
    • /
    • pp.253-262
    • /
    • 2017
  • This study aims at investigating the perceptions of science teachers about the role of visual representations in the teaching of electromagnetism, and finding out how science teachers use visual representations in their teaching of electromagnetism and the difficulties they experience in dealing with those representations. A total of 121 science teachers responded to the online survey. The results showed that most of the teachers agreed to the significance of using visual representations in the classroom but regarded their role as means of simply delivering science knowledge rather than constructing or generating knowledge. For the three visual representations widely used in teaching of electromagnetism in secondary schools (electrostatic induction on electroscope, magnetic field around current carrying wire, structure and principle of electric motor), the teachers preferred teacher-centered use of visual representations rather than student-centered and teacher's construction of representations were the most frequent among four types of use; interpretation, construction, application, and evaluation. The difficulties of teaching with these three visual representations were categorized into several factors; teachers, students, the characteristics of the representations, and lack of resources and classroom environment. Teachers' limited perceptions about the role of visual representations were associated with the ways of using visual representations in their teaching. Implications for the effective use of visual representations for science learning and teaching were discussed.

Examine the Features of Evidence Based Instruction in Elementary Mathematics Teacher's Guidebook For Students with Math Learning Disabilities and Students with Underachievement - Only about Number and Operations (초등 수학 교사용지도서의 학습장애 학생 및 학습부진학생을 위한 증거기반교수 요인 포함수준 분석 - 수와 연산 영역을 중심으로)

  • Kim, Byeong-Ryong
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.2
    • /
    • pp.353-370
    • /
    • 2016
  • This study examined elementary mathematics teacher's guidebook to determine the inclusion level of 11 critical features of evidence based instruction. And the inclusion level of the features in teacher's guidebook were interpreted as 'Low', 'Middle' and 'High'. The results are as followings. First, The overall inclusion level of the features in teacher's guidebook is 'Middle' The inclusion level of the features in teacher's guidebook for 1st, 2nd, 3rd and 4th were 'Middle' but for 5th and 6th were 'Low'. Second, the inclusion level of the features 'Clarity of Objective', 'Single Concepts and Skill Taught', 'Use of Manipulatives and Representation', 'Explicit Instruction', 'Provision of Examples for new concepts and skill', 'Adequate Independent Practice Opportunities' and 'Progress Monitoring' were 'Middle' The inclusion level of the features 'Review of Prerequisite Mathematical Skills', 'Error correction and Corrective Feedback' and 'Instruction of Strategies' were 'Low'. And discussed the results.

A Study of Arrow Performance using Artificial Neural Network (Artificial Neural Network를 이용한 화살 성능에 대한 연구)

  • Jeong, Yeongsang;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.548-553
    • /
    • 2014
  • In order to evaluate the performance of arrow that manufactures through production process, it is used that personal experiences such as hunters who have been using bow and arrow for a long time, technicians who produces leisure and sports equipment, and experts related with this industries. Also, the intensity of arrow's impact point which obtains from repeated shooting experiments is an important indicator for evaluating the performance of arrow. There are some ongoing researches for evaluating performance of arrow using intensity of the arrow's impact point and the arrow's flying image that obtained from high-speed camera. However, the research that deals with mutual relation between distribution of the arrow's impact point and characteristics of the arrow (length, weight, spine, overlap, straightness) is not enough. Therefore, this paper suggests both the system that could describes the distribution of the arrow's impact point into numerical representation and the correlation model between characteristics of arrow and impact points. The inputs of the model are characteristics of arrow (spine, straightness). And the output is MAD (mean absolute distance) of triangular shaped coordinates that could be obtained from 3 times repeated shooting by changing knock degree 120. The input-output data is collected for learning the correlation model, and ANN (artificial neural network) is used for implementing the model.

Gender and Abstract Thinking Disposition Difference Analyses of Visual Diagram Structuring for Computational Thinking Ability (컴퓨팅 사고력을 위한 시각적 다이어그램 구조화의 성별 및 추상적 사고 성향 차이 분석)

  • Park, Chan Jung;Hyun, Jung Suk
    • The Journal of Korean Association of Computer Education
    • /
    • v.21 no.3
    • /
    • pp.11-20
    • /
    • 2018
  • One major change in the 2015 revised national curriculum is that computational thinking ability is becoming an essential competency for students. Computational thinking is divided into abstraction, automation, and creative convergence in the curriculum for secondary schools' Information subject. And, the curriculum contains problem solving and programming area. Among the components of computational thinking, data representation emphasizes the ability to structure data and information for problem solving of learners. Pre-service teachers of Information subject at secondary schools also learn how to structure information through diagramming. There are differences in the ability to structure diagrams among students, but the studies on learning methods that help students develop their structuring abilities have rarely been performed. The purpose of this paper is to analyze the differences of abstract thinking disposition and gender perspective among college students. As a result, female students had more concrete thinking disposition than male students. Also, there were gender differences according to the characteristics of diagrams. Differences in abstract thinking disposition also made a difference in structuring diagrams. It is useful for achieving the education purpose of improving computational thinking ability by finding out the differences in thinking tendency between males and females and finding the education method that can complement them.

Visualization of Korean Speech Based on the Distance of Acoustic Features (음성특징의 거리에 기반한 한국어 발음의 시각화)

  • Pok, Gou-Chol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.3
    • /
    • pp.197-205
    • /
    • 2020
  • Korean language has the characteristics that the pronunciation of phoneme units such as vowels and consonants are fixed and the pronunciation associated with a notation does not change, so that foreign learners can approach rather easily Korean language. However, when one pronounces words, phrases, or sentences, the pronunciation changes in a manner of a wide variation and complexity at the boundaries of syllables, and the association of notation and pronunciation does not hold any more. Consequently, it is very difficult for foreign learners to study Korean standard pronunciations. Despite these difficulties, it is believed that systematic analysis of pronunciation errors for Korean words is possible according to the advantageous observations that the relationship between Korean notations and pronunciations can be described as a set of firm rules without exceptions unlike other languages including English. In this paper, we propose a visualization framework which shows the differences between standard pronunciations and erratic ones as quantitative measures on the computer screen. Previous researches only show color representation and 3D graphics of speech properties, or an animated view of changing shapes of lips and mouth cavity. Moreover, the features used in the analysis are only point data such as the average of a speech range. In this study, we propose a method which can directly use the time-series data instead of using summary or distorted data. This was realized by using the deep learning-based technique which combines Self-organizing map, variational autoencoder model, and Markov model, and we achieved a superior performance enhancement compared to the method using the point-based data.