• Title/Summary/Keyword: Reperfusion Injury

Search Result 333, Processing Time 0.024 seconds

Effect of Rosiglitazone on Myocardial Ischemia-Reperfusion Injury in Rat Heart

  • Ha, Ki-Chan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.4
    • /
    • pp.181-186
    • /
    • 2006
  • This study was undertaken to evaluate whether peroxisome proliferator-activated-receptor-gamma $(PPAR-{\gamma})$ agonist-rosiglitazone (ROSI) induces postischemic functional recovery in Langendorf heart model. Hearts isolated from normal rats were subjected to 20 min of normoxia or 25 min zero-flow ischemia followed by 50 min reperfusion. In this acute protocol, ROSI $(20\;{\mu}g/ml)$ administered 10 min before ischemia had no effect on hemodynamic cardiac function, but had protective effect on lipid peroxidation in in vitro experiments. In chronic protocol in which ROSI was given by daily gavage (4 mg/kg) for three consecutive days, ROSI could not prevent the hemodynamic alteration on cardiac performance, but has protective effect on the activity of superoxide dismutase (SOD). There was no significant difference in the contents of reduced glutathione (GSH) and catalase activity between ischemia-reperfusion (IR) and ROSI treated IR hearts. Although ROSI had no effect on hemodynamic factor, it had effect on antioxidant activity. Our results indicate that ROSI provides partial beneficial effects by inhibiting lipid peroxidation and/or recovering normal level of SOD activity in the ischemic reperfused heart.

Effects of the AngiotensinII $AT_1$ Receptor Antagonist SK-1080 on Ischemia/reperfusion in Isolated Rat Hearts and on Platelet Aggregation and Coagulation in Human Blood (Angiotensin II $AT_1$ 수용체 길항제인 SK-1080의 적출심장에 대한 허혈후 재관류시의 작용 및 혈소판응집과 혈액응고에 대한 효과)

  • Woo, Su-Kyoung;Choi, Sang-Su;Lee, Byung-Ho;Kwon, Kwang-Il
    • YAKHAK HOEJI
    • /
    • v.44 no.6
    • /
    • pp.558-565
    • /
    • 2000
  • SK-1080 is one of the newly developed orally active nonpeptide angiotensinII $AT_1-receptor$ antagonist that selectively acts at $AT_1$ receptor with high affinity. The cardiac effect on ischemia/reperfusion injury of SK-1080 was compared with those of losartan, a prototype of this class, in isolated rat hearts. Isolated perfused rat heart was pretreated with drug for 10 min and then subjected to global ischemia for 30 min followed by reperfusion with- or without drug for 30 min. The possible additive effect of SK-1080 on the platelet aggregation and coagulation in human blood was also studied. We investigated whether SK-1080 effects the platelet aggregation induced by ADP, a platelet agonist partially dependent on $thromboxaneA_2$. The clotting times in the prothrombin time (PT) and activated partial thromboplastin time (APTT) were also examined in human plasma in vitro as coagulation screening test. SK-1080 improved reperfusion function (LVDP, left ventricular developed pressure; PRP, rate-pressure product) in a dose-dependent manner. SK-1080 reduced ADP-induced platelet aggregation compared with vehicle but less than losartan, and did not affect clotting times.

  • PDF

Protective Effect of Defibrotide on Splanchnic Injury following Ischemia and Reperfusion in Rats

  • Choi, Soo-Ran;Jeong, Ji-Hoon;Song, Jin-Ho;Shin, Yong-Kyoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.2
    • /
    • pp.85-94
    • /
    • 2006
  • A splanchic artery occlusion for 90 min followed by reperfusion of the mesenteric circulation resulted in a severe form of circulatory shock, characterized by endothelial dysfunction, severe hypotension, marked intestinal tissue injury, and a high mortality rate. The effect of defibrotide, a complex of single-stranded polydeoxyribonucleotides having antithrombotic effect, was investigated in a model of splanchnic artery occlusion (SAO) shock in urethane anesthetized rats. Occlusion of the superior mesenteric artery for 90 min produced a severe shock state, resulting in a fatal outcome within 120 min of reperfusion in many rats. Defibrotide (10 mg/kg body weight) 10 min prior to reperfusion significantly improved mean arterial blood pressure in comparison to vehicle treated rats (p<0.05). Defibrotide treatment also significantly attenuated in the increase of plasma amino nitrogen concentration, intestinal myeloperoxidase activity, intestinal lipid peroxidation, infiltration of neutrophils in intestine and thrombin induced adherence of neutrophils to superior mesentric artery segments. Superoxide anion and hydrogen peroxide production in $1{\mu}M$ formylmethionylleucylphenylalanine (fMLP)-activated PMNs was inhibited by defibrotide in a dose-dependent fashion. Defibrotide effectively scavenged hydrogen peroxide, but not hydroxyl radical. Treatment of SAO rats with defibrotide inhibited tumor necrosis factor-${\alpha}$, and interleukin-1${\beta}$ productions in blood in comparison with untreated rats. These results suggest that defibrotide partly provides beneficial effects by preserving endothelial function, attenuating neutrophil accumulation, and antioxidant in the ischemic reperfused splanchnic circulation

The effects of berberine on ischemia-reperfusion injuries in an experimental model of ovarian torsion

  • Filiz Yilmaz;Orkun Ilgen;Alper Mankan;Bayram Yilmaz;Sefa Kurt
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.50 no.4
    • /
    • pp.292-298
    • /
    • 2023
  • Objective: Ovarian torsion is a gynecological disorder that causes ischemia-reperfusion injuries in the ovary. Our study investigated berberine's short- and long-term effects on ovarian ischemia-reperfusion injuries. Methods: This study included 28 Wistar albino female rats weighing 180 to 220 g, which were divided into four groups: sham (S), torsion/detorsion (T/D), torsion/ detorsion+single dose berberine (T/D+Bb), and torsion/detorsion+15 days berberine (T/D+15Bb). The torsion and detorsion model was applied in all non-sham groups. In the T/D+Bb group, a single dose of berberine was administered, while in the T/D+15Bb group, berberine was administered over a period of 15 days. After the rats were euthanized, their ovaries were excised. The left ovaries were used for histopathologic evaluation, which included ovarian injury scoring and follicle count, while the right ovaries were used for biochemical analyses (tissue transforming growth factor-β [TGF-β] and alpha-smooth muscle actin [α-SMA] levels). Results: The histopathologic evaluation scores for the ovaries were significantly lower in the T/D+B group (p<0.05) and the T/D+15B group (p<0.005) than in the T/D group. The follicle counts in the T/D group were lower than those in both the sham and treated groups (p<0.005). The TGF-β levels were significantly lower in the T/D+15B group (p<0.005), whereas the α-SMA levels did not show a significant difference. Conclusion: Both short- and long-term berberine use could potentially have therapeutic effects on ovarian torsion. Long-term berberine use exhibited anti-inflammatory effects by reducing TGF-β levels, thereby preventing ischemia-reperfusion injuries. Therefore, we suggest that long-term berberine use could be beneficial for ovarian torsion.

A Study on the Protective Effect of Antioxidants on Damage Induced by Liver Ischemia/Repefusion in a Rat Model (모델 랫드에 간 허혈/재관류로 유발된 손상에 대한 항산화제의 보호 효과에 관한 연구)

  • Ahn, Yong Ho;Seok, Pu Reum;Oh, Su Jin;Choi, Jin Woo;Shin, Jae-Ho
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.3
    • /
    • pp.370-378
    • /
    • 2019
  • The hepatic ischemic model has recently been widely used for the epidemiological study of ischemic reperfusion injury. This study was carried out to investigate the protective effect of vanillin, which is known to have antioxidant and anti-inflammatory effects, against hepatic and renal injury using an ischemia-reperfusion rat model, and we also investigated the mechanism related to vanillins' protective effect. The test material was administered at a concentration of 100 mg/kg for 3 days, followed by ligation of the liver for 60 minutes to induce ischemia reperfusion. As control groups, there was a negative control, sham control and ischemia-reperfusion-only ischemia reperfusion control, and the controls groups were compared with the drug administration group. In the vanillin group, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were significantly inhibited compared with the AST and ALT activities of the ischemia-reperfusion group, and histopathological examination showed significant reduction of both inflammation and necrosis. The malondialdehyde (MDA) and superoxide dismutase (SOD) levels were significantly different from the ischemia-reperfusion group. In conclusion, vanillin showed a hepatocyte protective action by alleviating the cellular inflammation and cell necrosis caused by hepatic ischemia-reperfusion, and vanillin mitigated inflammatory changes in the kidney glomeruli and distal tubules. The protective effect is considered to be caused by vanillin's antioxidant function. Further studies such as on cell death and possibly vanillin's same effect on damaged tissue will be necessary for clinical applications such as organ transplantation.

Pretreatment of Hyperbaric Oxygenation Increases the Activities of Myocardial Antioxidant Enzymes and Protects the Ischemia-Reperfusion Injury of the Heart (고압산소 전처치의 심근 항산화효소 활성 증가 및 허혈-재관류손상 보호 효과)

  • Oh, Dong-Jin;Kim, Young-Hoon;Kim, Chan-Hyung;Park, Jong-Wan;Kim, Myung-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.749-758
    • /
    • 1997
  • Myocardial ischemia-reperfusion injury is known to be mediated by reactive oxygen species. The myocardial cell is equipped with endogenous antioxidant defensive system which can be adaptively stimulated by various oxidative stress. It is postulated that an increased oxygen partial pressure induced by hyperbaric oxygenation impose an oxidative stress on the cells, resulting alterations in the endogenous antioxidant system. In this study we investigated the effect of hyperbaric oxygenation on the activities of myocardial antioxidant enzymes and observed whether the hyperbaric oxygenation could protect the ischemia-reperfusion injury of heart. Rats or rabbits were pretreated with hyperbaric $oxygenation(2{\sim}3\;atm\;O_2/1{\sim}3\;hrs/1{\sim}10\;days)$. The changes in activities of major antioxidant enzymes(superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phasphate dehydrogenase), functional recovery and infarct size were observed in the experimentally induced ischemia-reperfused hearts. In the hearts isolated from rats pretreated with $2\;atm\;O_2/1{\sim}2\;hrs$ for 5 days, the functional recovery after reperfusion(20 min) following global ischemia(25 min) was significantly increased without any observable oxygen toxicity. Lactate dehydrogenase release was also significantly reduced in this hyperbaric oxygenated rat hearts. In in vivo regional ischemia(30 min) model of rabbit hearts, pretreatrment with $2\;atm\;O_2/1\;hr$ for 5 days significantly limited the infarct size. Among the myocardial antioxidant enzymes of rat hearts pretreated with the hyperbaric oxygenation, the activities of catalase, superoxide dismutase and glucose-6-phosphatase dehydrogenase were increased, while those of glutathione peroxidase and reductase were not changed. There were lethal cases in the groups of rats exposed to 3 atm $3\;atm\;O_2/2{\sim}3\;hrs$ for 5 days. A lipid-peroxidation product, rnnlondialdehyde was increased in brains and livers of the rats exposed to$2\;atm\;O_2/2{\sim}3\;hrs/5\;days\;and\;3\;atm\;O_2/1\;hr/5days$. The present results suggest that the pretreatment of hyperbaric oxygenation can protect the post-ischemic rererfused hearts in association with a stimulation of the activities of myocardial antioxidant defensive enzymes, and that the hyperbaric oxygenation of $2\;atm\;O_2/1\;hr$for 5 days would be a safe condition which does not produce any oxygen toxicity.

  • PDF

The Effect of Prostaglandin E1 on Apoptosis Induced by Ischemia Reperfusion Injury in Rat Intestinal Mucosa (흰쥐소장 점막의 허혈재관류손상에서 프로스타글란딘 E1이 세포자멸사에 미치는 영향)

  • Bae, Tae Hui;Kim, Seung Hong;Kim, Cheol Kyu;Kim, Han Koo;Kim, Woo Seob
    • Archives of Plastic Surgery
    • /
    • v.32 no.3
    • /
    • pp.369-375
    • /
    • 2005
  • Apoptosis is a physiologic or programmed cell death process which is controlled by genes. It is essential for the function and the appropriate development of multicellular organism. It is also thought to be one of the main mechanisms of cell death in ischemic tissues. The effect of prostaglandin $E_1$($PGE_1$) is proven to be useful in the recovery of ischemic changes by inducing vasodilation of peripheral vessels and platelet disaggregation. $PGE_1$ is also known to suppress apoptosis in human liver sinusoidal endothelial cell from ischemia-reperfusion injury. The purpose of this study is to evaluate the effects of $PGE_1$ on the apoptosis in the ischemia reperfusion injury of rat intestine. Thirty Sprague-Dawley rats were used. In control group(N=15), superior mesenteric artery was occluded for 60 minutes and after removing the vessel clamp, it was reperfused for 60 minutes and harvested. In experimental group(N=15), a jejunal flap was also made as in the control group except for the intraarterial administration of the $PGE_1$ right after clamping the artery and removing the clamp. H&E, TUNEL and immunohistochemical stains for p53, bax, and bcl-2 were performed. There were ischemic changes in gross and microscopic findings in both groups. The apoptotic index was significantly lower in the experimental group($1.29{\pm}0.82$(p=0.003)) than in the control group ($2.33{\pm}0.95$). The rat intestinal ischemia apoptosis by ischemia-reperfusion was partly related to the modulating of bcl-2, bax, and p53 expression. Our results indicate that $PGE_1$ suppresses the apoptosis in the ischemic jejunal flap and this effect is probably the result of a increase in expression of bcl-2.

Rac1 inhibition protects the kidney against kidney ischemia/reperfusion through the inhibition of macrophage migration

  • You Ri Park;Min Jung Kong;Mi Ra Noh;Kwon Moo Park
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.3
    • /
    • pp.257-265
    • /
    • 2023
  • Kidney ischemia/reperfusion (I/R) injury, a common cause of acute kidney injury (AKI), is associated with the migration of inflammatory cells into the kidney. Ras-related C3 botulinum toxin substrate 1 (Rac1), a member of the Rho family of small GTPase, plays an important role in inflammatory cell migration by cytoskeleton rearrangement. Here, we investigated the role of Rac1 on kidney I/R injury and macrophage migration. Male mice were subjected to either 25 min of bilateral ischemia followed by reperfusion (I/R) or a sham operation. Some mice were administrated with either NSC23766, an inhibitor of Rac1, or 0.9% NaCl (vehicle). Kidney damage and Rac1 activity and expression were measured. The migration and lamellipodia formation of RAW264.7 cells, mouse monocyte/macrophage, induced by monocyte chemoattractant protein-1 (MCP-1, a chemokine) were determined using transwell migration assay and phalloidin staining, respectively. In sham-operated kidneys, Rac1 was expressed in tubular cells and interstitial cells. In I/R-injured kidneys, Rac1 expression was decreased in tubule cells in correlation with the damage of tubular cells, whereas Rac1 expression increased in the interstitium in correlation with an increased population of F4/80 cells, monocytes/macrophages. I/R increased Rac1 activity without changing total Rac1 expression in the whole kidney lysates. NSC23766 administration blocked Rac1 activation and protected the kidney against I/R-induced kidney damage and interstitial F4/80 cell increase. NSC23766 suppressed monocyte MCP-1-induced lamellipodia and filopodia formation and migration of RAW 264.7 cells. These results indicate Rac1 inhibition protects the kidney against I/R via inhibition of monocytes/macrophages migration into the kidney.

Role of Poly (ADP-ribose) Polymerase Activation in Chemical Hypoxia-Induced Cell Injury in Renal Epithelial Cells

  • Jung Soon-Hee
    • Biomedical Science Letters
    • /
    • v.11 no.4
    • /
    • pp.441-446
    • /
    • 2005
  • The molecular mechanism of ischemia/reperfusion injury remains unclear. Reactive oxygen species (ROS) are implicated in cell death caused by ischemia/reperfusion in vivo or hypoxia in vitro. Poly (ADP-ribose) polymerase (PARP) activation has been reported to be involved in hydrogen peroxide-induced cell death in renal epithelial cells. This study was therefore undertaken to evaluate the role of P ARP activation in chemical hypoxia in opossum kidney (OK) cells. Chemical hypoxia was induced by incubating cells with antimycin A, an inhibitor of mitochondrial electron transport. Exposure of OK cells to chemical hypoxia resulted in a time-dependent cell death. In OK cells subjected to chemical hypoxia, the generation of ROS was increased, and this increase was prevented by the $H_2O_2$ scavenger catalase. Chemical hypoxia increased P ARP activity and chemical hypoxia-induced cell death was prevented by the inhibitor of PARP activation 3-aminobenzamide. Catalase prevented OK cell death induced by chemical hypoxia. $H_2O_2$ caused PARP activation and $H_2O_2-induced$ cell death was prevented by 3-aminobenzamide. Taken together, these results indicate that chemical hypoxia-induced cell injury is mediated by PARP activation through H202 generation in renal epithelial cells.

  • PDF

Two-Dimensional Echocardiographic Preoperative Prediction of Prosthetic Valve Size (이면성 심초음파도로 구한 대동맥판륜부 크기와 실제 치환된 판막크기와의 비교연구)

  • 정태은
    • Journal of Chest Surgery
    • /
    • v.21 no.6
    • /
    • pp.979-983
    • /
    • 1988
  • Calcium channel blockers may prevent myocardial injury during cardioplegia and reperfusion. This study was done to evaluate the effects of diltiazem cardioplegia on myocardial protection during ischemic arrest and recovery of myocardial function after reperfusion. Four formulations of crystalloid cardioplegic solutions, GIK solution[group I, n=12], diltiazem[lug/ml GIK] in GIK solution[group II, n=7], ],diltiazem[2ug/ml GIK] in GIK solution[group III, n=6] and diltiazem[4ug/ml GIK] in GIK solution[group IV, n=6] were compared in isolated working rat heart subjected to a long period [2 hours] of hypothermic arrest with multi-dose infusion. Diltiazem cardioplegia[group II, III and IV]was found to be superior in nearly all aspects. Diltiazem cardioplegia showed faster recovery of regular rhythm and lower incidence of ventricular fibrillation than group I did. In comparing mechanical function in all experimental hearts, the mean postischemic recoveries of aortic flow, cardiac output, peak aortic pressure, stroke volume and stroke work[expressed as a percentage of its preischemic control] were significantly greater in group II, III and IV[diltiazem cardioplegia] than in group I. The infused amount of cardioplegic solution was more increased by the addition of diltiazem to GI K solution. [p < 0.01] Creatine kinase leakage tended to be lower in hearts receiving diltiazem cardioplegia, especially in group III and IV[p<0.05] than in those receiving GIK solution only[group I]. Diltiazem cardioplegia results in the increased flow of cardioplegic solution and the decreased ischemic injury of myocardium during ischemic arrest and the improved recovery of myocardial function after reperfusion, and a dose-response relation must be established before clinical use.

  • PDF