• 제목/요약/키워드: Reperfusion Injury

검색결과 332건 처리시간 0.032초

양에서 막형 산화기를 사용하여 심폐바이패스할 경우 백혈구격리 및 자유라디칼로 중재되는 폐손상 (Leukocyte Sequestration and Free Radical-Mediated Lung Injury in Ovine Cardiopulmonary bypass Using Membrane Oxygenator)

  • 김원곤;신윤철;서정욱
    • Journal of Chest Surgery
    • /
    • 제32권11호
    • /
    • pp.978-983
    • /
    • 1999
  • Background: Complement activation with transpulmonary leukocyte sequestration is considered a main mediator leading to ischemia-reperfusion lung(I-R) injury. We studied the role of leukocytes in the formation of I-R injury in ovine cardiopulmonary bypass(CPB) model with a membrane oxygenator. Material and Method: Five sheep were used. CPB circuitry consisted of a roller pump(American Optical Corp., Greenwich, CT, USA) and a membrane oxygenator(UNIVOX-IC, Bentley, Baxter Health Corp, Irvine, CA, USA). The CPB time was fixed at 120 min. Ten minutes after the start of CPB, total CPB was established. Thereafter a total CPB of 100 min was performed, followed by another 10 min of partial CPB. The CPB was discontinued and the animals were fully recovered. For measuring left and right atrial leukocyte counts, blood samples were taken before thoracotomy, 5 min and 109 in after the start of CPB, and 30 min and 120 min after weaning. C3a was measured before thoracotomy, 109 min after the start of CPB, and 30 min and 120 min after weaning. Plasma malondialdehyde(MDA) was checked before thoracotomy, 109 min after the start of CPB, and 30 min after weaning. One to two grams of lung tissue were taken for water content measurement before thoracotomy, 109 min after the start of CPB, and 30 min after weaning. Lung biopsy specimens were examined by light and electron microscopy. Result: Of 5 animals, 4 survived the experimental procedures. Of these, 3 animals survived on a long-term basis. No significant differences in transpulmonary gradients of leukocyte were found and no significant complement activation was expressed by C3a levels. MDA level did not show significant changes related to lung reperfusion despite an increase after the start of CPB. On both light and electron microscopic examinations, mild to moderate acute lung change was observed. Interstitial edema, leakage of erythrocytes into the alveolar space and endothelial cell swelling were the main findings. Water content of the lung showed a slight increase after the start of CPB, but there was no statistical significance. Conclusion: These findings indicate that ischemia-repersusion lung injury may not be from complement activation-leukocyte sequestration but from another source of oxygen free radicals related to CPB.

  • PDF

Therapeutic Effect of Three-Dimensional Cultured Adipose-Derived Stem Cell-Conditioned Medium in Renal Ischemia-Reperfusion Injury

  • Yu Seon Kim;Joomin Aum;Bo Hyun Kim;Myoung Jin Jang;Jungyo Suh;Nayoung Suh;Dalsan You
    • International Journal of Stem Cells
    • /
    • 제16권2호
    • /
    • pp.168-179
    • /
    • 2023
  • Background and Objectives: We evaluated the effect of adipose-derived stem cell-derived conditioned medium (ADSC-CM) on the renal function of rats with renal ischemia-reperfusion injury (IRI)-induced acute kidney injury. Methods and Results: Forty male Sprague-Dawley rats were randomly divided into four groups: sham, nephrectomy control, IRI control, ADSC-CM. The ADSC-CM was prepared using the three-dimensional spheroid culture system and injected into renal parenchyme. The renal function of the rats was evaluated 28 days before and 1, 2, 3, 4, 7, and 14 days after surgical procedures. The rats were sacrificed 14 days after surgical procedures, and kidney tissues were collected for histological examination. The renal parenchymal injection of ADSC-CM significantly reduced the serum blood urea nitrogen and creatinine levels compared with the IRI control group on days 1, 2, 3, and 4 after IRI. The renal parenchymal injection of ADSC-CM significantly increased the level of creatinine clearance compared with the IRI control group 1 day after IRI. Collagen content was significantly lower in the ADSC-CM group than in the IRI control group in the cortex and medulla. Apoptosis was significantly decreased, and proliferation was significantly increased in the ADSC-CM group compared to the IRI control group in the cortex and medulla. The expressions of anti-oxidative makers were higher in the ADSC-CM group than in the IRI control group in the cortex and medulla. Conclusions: The renal function was effectively rescued through the renal parenchymal injection of ADSC-CM prepared using a three-dimensional spheroid culture system.

The Role of Oxygen Free Radicals and Phospholipase $A_2$ in Ischemia-reperfusion Injury to the Liver

  • Park, Mee-Jung;Cho, Tai-Soon;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • 제18권3호
    • /
    • pp.189-194
    • /
    • 1995
  • The focus of this study was to investigate the influences of enzymatic scavengers of active oxygen metabolites and phospholipase $A_2$ inhibitor on hepatic secretory and microsomal function during hepatic ischemia/reperfusion. Rats were pretreated with free radical scavengers such as superoxide dismutase (SOD), catalase, deferoxamine and phospholipase $A_2$ inhibitor such as quinacrine and then subjected to 60 min. no-flow hepatic ischemia in vivo. After 1, 5 hr of reperfusion, bile was collected, blood was obtained from the abdominal aorta, and liver microsomes were isolated. Serum aminotransferase (ALT) level was increased at 1 hr and peaked at 5 hr. The increase in ALT was significantly attenuated by SOD plus catalase, deferoxamine and quinacrine especially at 5 hr of reperfusion. The wet weight-to-dry weight ratio of the liver was significantly increased by ischemia/reperfusion. SOD and catalase treatment minimized the increase in this ratio. Hepatic lipid peroxidiltion was elevated by ischemia/reperfusion, and this elevation was inhibited by free radical scavengers and quina crine. Bile flow and cholate output, but not bilirubin output, were markedly decreased by ischemia/reperfusion and quinacrine restored the secretion. Cytochrome $P_{450}$ content was decreased by ischemia/reperfusion and restored by free radical scavengers and quinacrine to the level of that of the sham operated group. Aminopyrine N-demethylase activity was decreased and aniline p-hydroxylase was increased by ischemia/reperfusion. The changes in the activities of the two enzymes were prevented by free radical scavengers and quinacrine. Our findings suggest that ischemia/reperfusion diminishes hepatic secretory functions as well as microsomal drug metabolizing systems by increasing lipid peroxidation, and in addition to free radicals, other factors such as phospholipase $A_2$ are involved in pathogenes of hepatic dysfunction after ischemia/reperfusion.

  • PDF

Myocardial Protection by Recombinant Soluble P-selectin Glyco-protein Ligand-1: Suppression of Neutrophil and Platelet Interaction Following Ischemia and Reperfusion

  • Ham, Sang-Soo;Jang, Yoon-Young;Song, Jin-Ho;Lee, Hyang-Mi;Kim, Kwang-Joon;Hong, Jun-Sik;Shin, Yong-Kyoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권6호
    • /
    • pp.515-523
    • /
    • 2000
  • Polymorphonuclear leukocytes (PMNs) play an important role in myocardial ischemia/reperfusion (MI/R) injury. Moreover, platelets are also important blood cells that can aggravate myocardial ischemic injury. This study was designed to test the effects of PMNs and platelets separately and together in provoking cardiac dysfunction in isolated perfused rat hearts following ischemia and reperfusion. Additional control rat hearts were perfused with $75{\times}10^6$ PMNs, with $75{\times}10^6$ platelets, or with $75{\times}10^6\;PMNs+75{\times}10^6$ platelets over a five minute perfusion followed by a 75 min observation period. No significant reduction in coronary flow (CF), left ventricular developed pressure (LVDP), or the first derivative of LVDP (dP/dt max) was observed at the end of the observation period in any non-ischemic group. Similarly, global ischemia (I) for 20 min followed by 45 minutes of reperfusion (R) produced no sustained effects on the final recovery of any of these parameters in any group of hearts perfused in the absence of blood cells. However, I/R hearts perfused with either PMNs or platelets alone exhibited decreases in these variables of $5{\sim}10%$ (p<0.05 from control). Furthermore, I/R hearts perfused with both PMNs and platelets exhibited decreases of 50 to 60% in all measurements of cardiac function (p<0.01). These dual cell perfused I/R hearts also exhibited marked increases in cardiac myeloperoxidase (MPO) activity indicating a significant PMN infiltration, and enhanced P-selectin expression on the coronary microvascular endothelium. All cardiaodynamic effects as well as PMN accumulation and P-selectin expression were markedly attenuated by a recombinant soluble PSGL-1 which inhibits selectin mediated cell adhesion. These results provide evidence that platelets and PMNs act synergistically in provoking post-reperfusion cardiac dysfunction, and that this may be largely due to cell to cell interactions mediated by P-selectin. These results also demonstrate that a recombinant soluble PSGL-1 reduces myocardial reperfusion injury by platelet and PMNs interaction.

  • PDF

The Neuroprotective Activities of the Sam-Hwang-Sa-Shim-Tang in the Transient Ischemic Model in Rats.

  • Kim, Min-Sun;Hwang, Young-Sun;Ryu, Jong-Hoon
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2001년도 추계학술대회 및 정기총회
    • /
    • pp.85-85
    • /
    • 2001
  • Sam-Hwang-Sa-Shim-Tang(SHSST), a traditional Chinese medicine, composed of Rhei rhizoma, Scutellaria radix, and Coptidis rhizoma were used in the several disease including hypertension, constipation, and hemorrhage. In the present study, we investigated the neuroprotective effects of SHSST and its ingredients on the ischemia/ reperfusion-induced brain injury was evaluated in the rat brain. Ischemia was induced by intraluminal occlusion of the right middle cerebral artery for 120 min and reperfusion was continued for 22 h. SHSST (450 mg/kg), Rhei rhii oma (100 mg/kg), Coptidis rhizoma (100 mg/kg), and Scutellaria radik (100 mg/kg) were orally administered twice, promptly prior to reperfusion and 2 h after the repefusion. Total infarction volume in the ipsilateral hemisphere of ischemia/ reperfusion rats was significantly lowed by the treatments of SHSST (39.2%) and Scutellaria radix (66.5%). However, Coptidis rhizoma did not show any significant effects on the total infarct volume. The inhibiting effect of Scutellaria radix on the total infarct volume was more potent than that of SHSST. In addition, Scutellaria radix significantly inhibited myeloperoxidase (MPO) activity, an index of neutrophil infiltration in ischemic brain tissue. However, there was marked mismatch between total infarct volume and MPO activity in the Scutellaria radix-treated rats. Our findings suggest that Scutellaria radix as an ingredient of SHSST plays a protective role in ischemia-induced brain injury by inhibiting neutrophil infiltration. The effects of Rhei rhizoma on transient brain ischemia-induced neuronal injury are under study.

  • PDF

Protective Role of Fucoidan in Cerebral Ischemia-Reperfusion Injury through Inhibition of MAPK Signaling Pathway

  • Che, Nan;Ma, Yijie;Xin, Yinhu
    • Biomolecules & Therapeutics
    • /
    • 제25권3호
    • /
    • pp.272-278
    • /
    • 2017
  • Fucoidan has been reported to exhibit various beneficial activities ranging from to antivirus and anticancer properties. However, little information is available about the effects of fucoidan on cerebral ischemia-reperfusion injury (IRI). Our study aimed to explore the effects of fucoidan on cerebral IRI, as well as the underlying mechanisms. Sprague-Dawley (SD) rats were randomly subjected to four groups: Sham, IRI+saline (IRI+S), IRI+80 mg/kg fucoidan (IRI+F80), and IRI+160 mg/kg fucoidan (IRI+F160). Fucoidan (80 mg/kg or 160 mg/kg) was intraperitoneally injected from 7 days before the rats were induced to cerebral IRI model with middle cerebral artery occlusion (MCAO) method. At 24 h after reperfusion, neurological deficits and the total infarct volume were determined. The levels of inflammation-associated cytokines (interleukin (IL)-$1{\beta}$, IL-6, myeloperoxidase (MPO), and tumor necrosis factor (TNF)-${\alpha}$), oxidative stress-related proteins (malondialdehyde (MDA) and superoxide dismutase (SOD)) in the ischemic brain were measured by enzyme-linked immunosorbent assay (ELISA). Besides, the levels of apoptosis-related proteins (p-53, Bax, and B-cell lymphoma (Bcl)-2) and mitogen-activated protein kinase (MAPK) pathway (phosphorylation-extracellular signal-regulated kinase (p-ERK), p-c-Jun N-terminal kinase (JNK), and p-p38) were measured. Results showed that administration of fucoidan significantly reduced the neurological deficits and infarct volume compared to the IRI+S group in a dose-dependent manner. Also, fucoidan statistically decreased the levels of inflammation-associated cytokines, and oxidative stress-related proteins, inhibited apoptosis, and suppressed the MAPK pathway. So, Fucoidan plays a protective role in cerebral IRI might be by inhibition of MAPK pathway.

Curcumin attenuates renal ischemia reperfusion injury via JNK pathway with the involvement of p300/CBP-mediated histone acetylation

  • Yang, Lu;Chen, Xiaoxiang;Bi, Zirong;Liao, Jun;Zhao, Weian;Huang, Wenqi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권5호
    • /
    • pp.413-423
    • /
    • 2021
  • Apoptosis is proved responsible for renal damage during ischemia/reperfusion. The regulation for renal apoptosis induced by ischemia/reperfusion injury (IRI) has still been unclearly characterized to date. In the present study, we investigated the regulation of histone acetylation on IRI-induced renal apoptosis and the molecular mechanisms in rats with the application of curcumin possessing a variety of biological activities involving inhibition of apoptosis. Sprague-Dawley rats were randomized into four experimental groups (SHAM, IRI, curcumin, SP600125). Results showed that curcumin significantly decreased renal apoptosis and caspase-3/-9 expression and enhanced renal function in IRI rats. Treatment with curcumin in IRI rats also led to the decrease in expression of p300/cyclic AMP response element-binding protein (CBP) and activity of histone acetyltransferases (HATs). Reduced histone H3 lysine 9 (H3K9) acetylation was found near the promoter region of caspase-3/-9 after curcumin treatment. In a similar way, SP600125, an inhibitor of c-Jun N-terminal kinase (JNK), also attenuated renal apoptosis and enhanced renal function in IRI rats. In addition, SP600125 suppressed the binding level of p300/CBP and H3K9 acetylation near the promoter region of caspase-3/-9, and curcumin could inhibit JNK phosphorylation like SP600125. These results indicate that curcumin could attenuate renal IRI via JNK/p300/CBP-mediated anti-apoptosis signaling.

교통사고 후 발생한 드문 원인에 의한 인지 장애 1예 (Unusual Cause of Cognitive Impairment after a Traffic Accident)

  • 박치민
    • Journal of Trauma and Injury
    • /
    • 제24권2호
    • /
    • pp.151-154
    • /
    • 2011
  • In trauma patients, cognitive impairment may develop due to several causes: traumatic brain injury such as intracranial hemorrhage, diffuse axonal injury, hypoxic brain injury or reperfusion injury, the psychologic disorder, such as acute stress disorder, post-traumatic disorder or delirium. We describe a 62-year-old male with post-trauma cognitive impairment due to a primary central nervous system lymphoma.

장의 허혈-재관류로 유도된 급성 폐손상에서 아스피린의 작용 (Effect of Aspirin on the Acute Lung Injury Induced by Intestinal Ischemia/Reperfusion.)

  • 박윤엽
    • 생명과학회지
    • /
    • 제19권6호
    • /
    • pp.818-824
    • /
    • 2009
  • 급성 폐손상시 아스피린이 나타내는 염증 억제작용의 기전을 이해하기 위하여 쥐에서 장 허혈-재관류에 의한 급성 폐손상을 유발하여 phospholipase $A_{2}$ 억제제인 mepacrine과 아스피린의 효과를 비교하였다. 내독소 처치시 A549 세포와 RAW264.7 세포에서 cyc1ooxygenase-2 (COX-2)의 발현이 증가했는데, RAW264.7 세포의 반응이 더 크게 나타났다. 장의 허혈-재관류에 의해 장관 및 폐장조직에서 myeloperoxidase 활성도가 증가하여 염증성 호중구의 침윤이 증가했음을 보여 주었다. 조직 소견상에서도 조직 손상과 염증세포의 침윤이 관찰되었으며, 이는 아스피린 또는 mepacrine 전처치 시 억제 되었다. NADPH oxidase 억제작용이 있는 apocynin과 p38 MAPK 억제제인 SB203580은 A549 세포와 RAW264.7 세포의 LPS에 의한 COX-2 발현을 억제시켰으며 RAW264.7 세포에서 더 크게 억제되었다. 이상의 결과를 통해서 아스피린이 급성 폐손상의 예방목적으로 사용될 수 있다고 보여지며, RAW264.7 세포와 A549 세포에서 COX-2 발현은 다른 특성을 보여서 다른 조절기전이 있을 것으로 생각된다.