• Title/Summary/Keyword: Repeated structure

Search Result 609, Processing Time 0.03 seconds

The Estimation of Structural-Borne Noise and Vibration of the Bridge under the Passage of the Light Rail Transit (경량전철 교량 상부구조의 열차주행에 대한 진동 및 소음 분석)

  • Yeo, In-Ho;Chung, Won-Seok;Kim, Sung-Choon;Kim, Sung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.1 s.38
    • /
    • pp.22-28
    • /
    • 2007
  • During the passage of the train, the railway bridge undergoes vibration and noise. The noise of railway bridge can be occurred from various sources. The wheel-rail contact, noise from machinery parts, structural-borne noise, pantagraph noise and aerodynamic noise of the train work in combination. Running train is one of the most important factors for railway bridge vibration. The repeated forces with equidistant axles cause the magnification of dynamic responses which relates with maintenance of the track structure and structure-borne noises. The noise problem is one of the most important issues in services of light rail transit system which usually passes through towns. In the present study, The vibration and noise of the LRT bridge will be investigated with utilizing dynamics responses from moving train as input data for noise analysis.

A Study of the Lug Fracture Improvement for Composite Leaf Spring Landing Gear (판스프링방식 착륙장치의 러그파손 개선 연구)

  • Shim, Daisung;Jang, Deakhyeon;Park, Chahwan;Kim, Jounghun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.343-349
    • /
    • 2015
  • This is a study for the improvement of the fractured lug structure that connects the landing gear to the fuselage of the aircraft using the composite leaf spring landing gear. The lug surface was analyzed to find out the cause of fracture. The lug was destroyed by the crack initiation and propagation under the repeated stresses. The frictional wears of the lug structure were proceeded and that affected adversely to the crack. Also, the square protrusion of the lug has a weak shape to bring about stress concentration. The design changes were conducted and the test was performed to verify changed design results.

Autonomous Mobile Robot System Design based on a Learning Aritificial Immune Network Structure (인공 면역망 구조 학습에 근거한 자율 이동 로봇 시스템 설계)

  • Lee, Dong-Je;Lee, Min-Joong;Choi, Young-Kiu;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3036-3038
    • /
    • 1999
  • The conventional structure for an action selector of an Autonomous Mobile Robot (AMR) has been criticized for a repeated action. To overcome this problem recently many researches have been focused on the reactive planning systems such as the biological immune system. In this paper, we propose a learning aritificial immune network, the learning method is to use Genetic Algorithm (GA). The computer simulation show that the usefulness of the learning immune network.

  • PDF

The Structure and Dielectric Properties of BST Thin Films Using Fractal Process (프렉탈 처리를 이용한 BST 박막의 구조 및 유전적특성)

  • 기현철;박지순;이우기;민용기;김태성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.43-46
    • /
    • 2000
  • In this study, (Ba, Sr)$TiO_3$ (BST) ceramics thin films were prepared by Sol-Gel method. BST solution was made and spin-coated on Pt/$TiO_2$/Si substrate at 4000 [rpm] for 10 seconds. Coated specimens were dried at 150[$^{\circ}C$] for 5 minutes. Coating process was repeated 3 times and then sintered at 750[$^{\circ}C$] for 30 minutes. Structure and electrical characteristics of specimen was analyzed by Fractal Process. Thickness of BST ceramics thin films are about 2800[$\AA$]. Dielectric constant and loss of thin films was little decreased at 1[kHz]~1[MHz]. Dielectric constant and loss to frequency were 250 and 0.02 in BST3. The property of leakage current as the relation between the current and the voltage was that change of the leakage current was stable when the applied voltage was 0~3[V].

  • PDF

Numerical Simulation of Double SMA wire Actuator Using Two-Way Shape Memory Effect of SMA (형상기억합금의 양방향효과를 이용한 두개의 형상기억합금선이 부착된 작동기의 수치해석)

  • Kim, Sang-Haun;Cho, Maeng-Hyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.287-290
    • /
    • 2004
  • A structure using the two-way shape memory effect (TWSME) returns to its initial shape by increasing or decreasing temperature under initial residual stress. Through the thermo-mechanical constitutive equation of shape memory alloy(SMA) proposed by Lagoudas et al., we simulate the behavior of a double actuator in which two SMA wires are attached to the tip of panel under the initially given residual stress. Through the numerical results conducted in the present study, the proposed actuator device is suitable for repeated actuation. The simulation algorithm proposed in the present study can be applied extensively to the analysis of the assembled .system of SMA-actuator and host structure in the practical applications.

  • PDF

An efficient modeling technique for floor vibration in multi-story buildings

  • Lee, Dong-Guen;Ahn, Sang-Kyoung;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.603-619
    • /
    • 2000
  • Analysis of a framed structure for vertical vibration requires a lot of computational efforts because large number of degrees of freedom are generally involved in the dynamic responses. This paper presents an efficient modeling technique for vertical vibration utilizing substructuring technique and super elements. To simplify the modeling procedure each floor in a structure is modeled as a substructure. Only the vertical translational degrees of freedom are selected as master degrees of freedom in the inside of each substructure. At the substructure-column interface, horizontal and rotational degrees of freedom are also included considering the compatibility condition of slabs and columns. For further simplification, the repeated parts in a substructure are modeled as super elements, which reduces computation time required for the construction of system matrices in a substructure. Finally, the Guyan reduction technique is applied to enhance the efficiency of dynamic analysis. In numerical examples, the efficiency and accuracy of the proposed method are demonstrated by comparing the response time histories and the analysis time.

Development of a High Value Added Knit Structure for Middle-aged Women (중년여성을 위한 고부가가치 니트 조직 개발)

  • Lee, Insuk;Kim, Jiyoung
    • Journal of Fashion Business
    • /
    • v.18 no.2
    • /
    • pp.148-165
    • /
    • 2014
  • The purpose of this study is to establish a theory about the necessary structure for knitwear design, and to propose it with the practical data through the actual development of a high value added knit structure. For this study, the market was conducted along with literature reviews on the existing studies and the relevant books about knit structures. The market research aimed at the products released in the spring/summer and fall/winter seasons of 2012-2013, focusing on brand for middle aged women. The utilization of the structure by item and the characteristics of knit design were studied. The research was conducted on S/S products in May and July, and F/W products in October and December. As a result of the market research, it was shown that the lightweight structures with permeability such as plain, lace, links and links, this is repeated and rib structure were frequently utilized during the S/S season, while double structures with good shape stability were greatly utilized during the F/W season. Also, during the F/W season, a cable structure and tubular jacquard that emphasized the volume or cubic effect were frequently used, and there were many jacquard structures where a change of color sense and motive were added. Concerning the knit structures development, the researcher designed the knit structure at the actual production site of the knit fashion. A total of 5 pieces of knit structures were developed by asking a professional for programming and knitting. To the developed structures, the study added a multi-gauged effect, herringbone transformation effect, 3-dimensional surface effect, color effects, geometric patterns, lace penetration effect, and soft surface effect in a water-drop shape. In addition, the structures had differences in the added values by mixing various structures and diversely expressing color sense on the knitting line. This study proposes the direction for 21st century knitwear product design, through the development of a high value added knit structure.

Study on Out-of-plane Properties and Failure Behavior of Aircraft Wing Unit Structures (항공기 날개 부분 단위구조체의 면 외 방향 물성 및 파손거동에 관한 연구)

  • Yoon, Chang-Mo;Lee, Dong-Woo;Byun, Joon-Hyung;Tran, Thanh Mai Nguyen;Song, Jung-il
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.106-114
    • /
    • 2022
  • Carbon fiber-reinforced plastic, well known high specific strength and high specific stiffness, have been widely used in the aircraft industry. Mostly the CFRP structure is fabricated by lamination of carbon fiber or carbon prepreg, which has major disadvantage called delamination. Delamination is usually produced due to absence of the through-thickness direction fiber. In this study, three-dimensional carbon preform woven in three directions is used for fabrication of aircraft wing unit structure, a part of repeated structure in aircraft wing. The unit structure include skin, stringer and rib were prepared by resin transfer molding method. After, the 3D structure was compared with laminate structure through compression test. The results show that 3D structure is not only effective to prevent delamination but improved the mechanical strength. Therefore, the 3d preform structure is expected to be used in various fields requiring delamination prevention, especially in the aircraft industry.

A Study on the Methodology to Ensure Long-Term Durability of Low and Intermediate Level Radwaste Disposal Concrete Structure (${\cdot}$저준위 방사성폐기물 처분 콘크리트 구조물의 장기적 내구성 확보를 위한 방안 검토)

  • Kim Young-Ki;Lee Byung-Sik;Lee Yong-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.211-220
    • /
    • 2005
  • The concrete structure is being considered for the main engineered barrier of low and intermediate level radwaste disposal facility. Concrete of low permeability can minimize infiltration of water and effectively prevent release of nuclide to ecosystem. But if concrete degrades, structural stability of disposal structure will decrease while permeability increase, resulting in increased possibility of nuclide release due to water infiltration. Therefore disposal concrete structure degradation shall be minimized to maintain capacity of nuclide isolation. The typical causes of concrete structure degradation are sulfide attack, reinforcement corrosion due to chloride attack, leaching of calcium hydroxide, alkali-aggregate reaction and repeated freezing-thawing. The common cause of these degradation processes is infiltration of water or adverse chemicals into concrete. Based on the study of these degradation characteristics and mechanisms of concrete structure, the methodology of design and service life evaluation of concrete structure as an engineered barrier are reviewed to ensure its long-term durability.

  • PDF

Random imperfection effect on reliability of space structures with different supports

  • Roudsari, Mehrzad Tahamouli;Gordini, Mehrdad
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.461-472
    • /
    • 2015
  • The existence of initial imperfections in manufacturing or assembly of double-layer space structures having hundreds or thousands of members is inevitable. Many of the imperfections, such as the initial curvature of the members and residual stresses in members, are all random in nature. In this paper, the probabilistic effect of initial curvature imperfections in the load bearing capacity of double-layer grid space structures with different types of supports have been investigated. First, for the initial curvature imperfection of each member, a random number is generated from a gamma distribution. Then, by employing the same probabilistic model, the imperfections are randomly distributed amongst the members of the structure. Afterwards, the collapse behavior and the ultimate bearing capacity of the structure are determined by using nonlinear push down analysis and this procedure is frequently repeated. Ultimately, based on the maximum values of bearing capacity acquired from the analysis of different samples, structure's reliability is obtained by using Monte Carlo simulation method. The results show the sensitivity of the collapse behavior of double-layer grid space structures to the random distribution of initial imperfections and supports type.