• 제목/요약/키워드: Repeated hysteresis

검색결과 31건 처리시간 0.025초

EXPERIMENTAL STUDY ON THE BUSHING CHARACTERISTICS UNDER SEVERAL EXCITATION INPUTS FOR BUSHING MODELING

  • Ok, J.K.;Yoo, W.S.;Sohn, J.H.
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.455-465
    • /
    • 2007
  • The bushing element shows nonlinear characteristics in both displacements and frequencies, also with hysteretic responses for repeated vibrational excitations. Since the characteristics of the rubber bushing significantly affects the accuracy of the vehicle dynamic simulation result, it should be accurately modeled in the vehicle suspension model. To develop an accurate bushing model for vehicle dynamics analysis, the bushing characteristics under several excitation inputs must be known. In this paper, a 3-axis tester was used to capture the bushing characteristics. The random inputs, sine inputs, and step inputs were imposed on each axis of the bushing. Also, two-axis inputs, the radial-axial and radial-normal inputs, were simultaneously imposed on the tester. Three-axis inputs including the radial-axial-normal direction were supplied to the tester. Bushing characteristics of each case were precisely analyzed. These results could be available for dynamic modeling of bushing.

엔지니어링 플라스틱 슬릿댐퍼의 수치해석적 연구 (Numerical Analysis of Engineering Plastics Slit Damper)

  • 김유성;김기철
    • 한국공간구조학회논문집
    • /
    • 제24권3호
    • /
    • pp.79-86
    • /
    • 2024
  • Recently, steel dampers are widely used as seismic reinforcement devices. Steel dampers have the advantage of being easy to manufacture and being able to absorb a lot of energy through stable hysteresis behavior. However, there is a possibility that the steel damper may be damaged due to fatigue caused by repeated seismic loads. In this study, the seismic performance of steel dampers and engineering plastic dampers with different physical characteristics were compared and analyzed. In addition, numerical analysis was performed on a hybrid damper that combines a steel damper and an engineering plastic damper. It is more effective to apply engineering plastic dampers to structures that experience significant displacement due to seismic loads. The behavior of hybrid dampers combining steel dampers and engineering plastic dampers is dominated by steel dampers. A hybrid damper in which an engineering plastic damper yields after a steel damper yields can effectively respond to various seismic loads and secure high ductility and excellent seismic performance.

LWD를 활용한 에폭시 아스팔트 포장의 정상 표면처짐 범위 연구 (A Study on Normal Range of Surface Deflection for Epoxy Asphalt Pavement using Light Weight Deflectormeter)

  • 박기선;김경남;김낙석
    • 대한토목학회논문집
    • /
    • 제35권1호
    • /
    • pp.229-236
    • /
    • 2015
  • 본 연구는 에폭시 아스팔트 포장 내부 상태 평가를 위해 이동 차량하중 모사가 가능한 회복탄성계수 실험과 LWD 실험을 수행하였다. 회복탄성계수 실험에서 측정된 변위는 일반 아스팔트와 달리 잔류변형이 매우 미소한 수준으로 탄성변형과 유사한 거동을 보여 정상 상태로 해석해도 무리가 없는 것으로 나타났다. 회복탄성계수에서 측정된 변위 결과를 처짐 탄성계수로 변환 후 1 SIGMA 단계를 적용하여 정상 처짐 탄성계수 범위를 산정하였다. $60^{\circ}C$에서의 파손 의심 처짐 범위와 하중-변위 선도 개형으로 포장 내부 상태를 예측하였다. 정상 표면처짐 구간인 $140{\mu}m$의 일부 구간에서 수분 침투 및 접착성능 저하가 관찰되었으나, 하중-변위 선도 개형에서 변곡점 발생 구간으로 확인되었다. 현장 확인 결과 제시된 기준은 높은 수준의 정확도를 보이는 것으로 나타났다.

Physical Property Evaluation of Chitosan Mordanted Green Tea Dyed Cellulose - Focusing on the physical property changes upon the repetition of treatment -

  • Jung, Hye-Kyung;Kim, Sin-Hee
    • 패션비즈니스
    • /
    • 제12권6호
    • /
    • pp.61-72
    • /
    • 2008
  • The UV-protection effect of green-tea dyed fabrics was reported in our previous studies. The chitosan was used as a natural mordant of cellulose fiber for green tea extract because chitosan is a natural bio-polymer. The increase in the UV protection property of summer cellulose fabrics, cotton and linen, upon the repetition of chitosan mordanting and green tea dyeing was observed. However, the physical property change would be followed by this repeated wet processing of the cellulose fabric. Therefore, the physical changes of the chitosan mordanted and green tea dyed cotton and linen fabrics were evaluated by KES-FB system. Tensile, shear, bending, compression, and surface characteristics were tested upon the repetition of mordanting and dyeing treatments. Linearity of tensile force increased in the treated cotton and linen samples. Tensile energy and resilience decreased in all treated fabrics. Shear stiffness increased in the treated cotton and linen in general. Shear hysteresis was increased in all cotton samples and some linen samples. In cotton, the bending rigidity in all treated cottons increased except C3G3. As the chitosan mordanting numbers increased, the bending rigidity tended to decrease. In linen, the bending rigidity and hysteresis increased in all treated samples. Compressional energy and resilience increased as the number of chitosan mordanting increased both in cotton and linen. This could be the result of the increase in thickness upon chitosan mordanting. Surface coefficient of friction increased in the treated cotton and linen in general. Surface roughness tended to increase in cotton.

Performance control analysis of concrete-filled steel tube sepa-rated spherical joint wind power tower

  • Yang Wen;Guangmao Xu;Xiazhi Wu;Zhaojian Li
    • Structural Engineering and Mechanics
    • /
    • 제87권2호
    • /
    • pp.137-149
    • /
    • 2023
  • In this study, to explore the working performance of the CFST split spherical node wind power tower, two groups of CFST split spherical joint plane towers with different web wall thicknesses and a set of space systems were analyzed. The tower was subjected to a low-cycle repeated load test, and the hysteresis and skeleton curves were analyzed. ABAQUS finite element simulation was used for verification and comparison, and on this basis parameter expansion analysis was carried out. The results show that the failure mode of the wind power tower was divided into weld tear damage between belly bar, high strength bolt thread damage and belly rod flexion damage. In addition, increasing the wall thickness of the web member could render the hysteresis curve fuller. Finally, the bearing capacity of the separated spherical node wind power tower was high, but its plastic deformation ability was poor. The ultimate bearing capacity and ductility coefficient of the simulated specimens are positively correlated with web diameter ratio and web column stiffness ratio. When the diameter ratio of the web member was greater than 0.13, or the stiffness ratio γ of the web member to the column was greater than 0.022, the increase of the ultimate bearing capacity and ductility coefficient decreased significantly. In order to maximize the overall mechanical performance of the tower and improve its economy, it was suggested that the diameter ratio of the ventral rod be 0.11-0.13, while the stiffness ratio γ should be 0.02-0.022.

TDR 측정시스템이 도입된 압력판 추출 시험기를 이용한 흙-함수특성곡선 연구 (Soil Water Characteristic Curve Using Volumetric Pressure Plate Extractor Incorporated with TDR System)

  • 정영석;사희동;강성훈;오세붕;이종섭
    • 한국지반공학회논문집
    • /
    • 제31권8호
    • /
    • pp.17-28
    • /
    • 2015
  • 흙-함수특성곡선에 대한 선행 연구결과들의 경우, 정량적으로 간극수 유출입량을 측정하여 모관흡수력에 따른 체적함수비를 산정하였다. 본 연구에서는, 압력판 추출시험기(VPPE)에 Time Domain Reflectimoetry(TDR) 측정 시스템을 도입하여 불포화토의 건조과정 및 습윤과정 진행에 따른 유전상수를 측정하여 체적함수비를 산정하고자 하였다. 압력판 추출 시험기는 압력셀, 압력조절장치, 뷰렛 시스템, TDR 프로브로 구성된다. 압력셀에 초기 간극비가 다른 두 시료를 조성한 후, 압력조절장치를 이용하여 압력셀 내부에 0.1kPa - 50kPa 범위의 공기압을 가하여 모관흡수력을 조절하였다. 그리고 뷰렛시스템을 이용하여 모관흡수력 변화에 따른 시료의 체적함수비 변화를 측정하였다. 또한, 압력셀 내부에 설치된 TDR 프로브를 이용하여 프로브 양단에서 발생되는 전자기파의 반사 신호로부터 유전상수를 산정하였다. 주문진 표준사의 체적함수비 변화에 따른 유전상수 측정에 대한 보정으로 도출한 체적함수비와 유전상수관계를 이용하여 시료의 체적함수비를 산정하였다. 실험 결과, 시료의 초기 간극비와 상관없이 TDR 프로브에 의해 산정된 체적함수비는 뷰렛 시스템을 통해 정량적으로 산정된 체적함수비와 매우 유사한 것으로 나타났다. 또한, 건조과정 및 습윤과정 진행에 따라 동일한 모관흡수력에 대한 함수비의 차이가 존재하는 이력현상(Hysteresis)이 발생하였고, 건조과정 및 습윤과정의 반복에 따라 이력현상은 줄어들었다. 본 연구에서 적용된 전자기파의 시간영역반사법(TDR)을 통해 불포화토의 흙-함수특성곡선을 효과적으로 파악할 수 있을 것으로 판단된다.

천장 브래킷형 모듈러 시스템의 브래킷 길이와 볼트에 따른 내진성능평가 (Seismic Performance Evaluation of the Ceiling Bracket-type Modular System with Various Bracket Lengths and Bolt Types)

  • 곽의신;강창훈;손수덕;이승재
    • 대한건축학회논문집:구조계
    • /
    • 제34권4호
    • /
    • pp.25-33
    • /
    • 2018
  • In regard to modular systems, new methods, as well as middle and high-story unit design ideas, are currently being studied. These studies need to focus on the enhanced stiffness and seismic performance of these connections, and see that the development of fully restrained moment connections can improve the seismic performance. For this reason, this study evaluates the performance of the connections of the ceiling bracket-typed modular system through repeated loading tests and analyses. In order to compare them with these modular units, new unit specimens with the bracket connection being different from that of the traditional modular unit specimens were designed, and the results of repeated loading tests were analyzed. In the traditional units, the structural performances of both welding connection and bolt connection were evaluated. In regard to the testing results, the initial stiffness of the hysteresis curve was compared with the theoretical initial stiffness, and the features of all specimens were also analyzed with regard to the maximum moment. In addition, the test results were examined with regard to the connection flexural strength of the steel special moment frame specified under the construction criteria KBC2016. The connections, which were proposed in the test results, were found to be fully restrained moment connections for designing strong column-weak beams and meeting the requirements of seismic performance of special moment frames.

Dimensional Responses of Wood Under Cyclical Changing Temperature at Constant Relative Humidity

  • Yang, Tiantian;Ma, Erni;Shi, Yi
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권5호
    • /
    • pp.539-547
    • /
    • 2015
  • To investigate dimensional responses of wood under dynamic temperature condition, poplar (populous euramericana Cv.) specimens, 20 mm in radial (R) and tangential (T) directions with two thicknesses of 4 and 10 mm along the grain, were exposed to cyclic temperature changes in square wave between $25^{\circ}C$ and $40^{\circ}C$ at 60% relative humidity (RH) for three different cycling periods of 6 h, 12 h and 24 h. R and T dimensional changes measured during the cycling gave the following results: 1) Transverse dimensional changes of the specimens were generally square but at an opposite phase and lagged behind the imposed temperature changes. The phase lag was inversely correlated with cycling period, but positively related to specimen thickness, while the response amplitude was directly proportional to cycling period, but in a negative correlation with specimen thickness. 2) The specimens showed swelling hysteresis behavior. The heat shrinkage coefficient (HSC) became greater as cycling period increased or specimen thickness decreased. 3) Dimensional changes of the specimens produced deformation accumulation during repeated adsorption and desorption. The deformation accumulating ratio decreased with an increase in cycling period and specimen thickness. 4) Wood suffered 1.5 times as many dimensional changes per unit temperature variation as per unit humidity variation, and this deformation behaved even more seriously under static condition.

웨어러블 텍스타일 스트레인 센서 리뷰 (Wearable Textile Strain Sensors)

  • 노정심
    • 한국의류산업학회지
    • /
    • 제18권6호
    • /
    • pp.733-745
    • /
    • 2016
  • This paper provides a review of wearable textile strain sensors that can measure the deformation of the body surface according to the movements of the wearer. In previous studies, the requirements of textile strain sensors, materials and fabrication methods, as well as the principle of the strain sensing according to sensor structures were understood; furthermore, the factors that affect the sensing performance were critically reviewed and application studies were examined. Textile strain sensors should be able to show piezoresistive effects with consistent resistance-extension in response to the extensional deformations that are repeated when they are worn. Textile strain sensors with piezoresistivity are typically made using conductive yarn knit structures or carbon-based fillers or conducting polymer filler composite materials. For the accuracy and reliability of textile strain sensors, fabrication technologies that would minimize deformation hysteresis should be developed and processes to complement and analyze sensing results based on accurate understanding of the sensors' resistance-strain behavior are necessary. Since light-weighted, flexible, and highly elastic textile strain sensors can be worn by users without any inconvenience so that to enable the users to continuously collect data related to body movements, textile strain sensors are expected to become the core of human interface technologies with a wide range of applications in diverse areas.

회전 도포 공정을 이용한 Polymethyl methacrylate(PMMA) 박막의 열처리에 따른 전기적 특성 평가 (Electric properties of Polymethyl methacrylate(PMMA) Films to thermal treatment Prepared by Spin Coating)

  • 나문경;강동필;안명상;명인혜;강영택
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.1924-1926
    • /
    • 2005
  • Poly(methyl methacrylate) (PMMA) is one of the promising representive of polymer gate dielectric for its high resistivity and sutible dielectric constant. PMMA (Mw=96700) films were prepared on p-Si by spin coating method. PMMA were coated compactively and flatly as observes by AFM. MIS(Al/PMMA/p-Si) structure was made and capacitance-voltage (C-V) and current-voltage (I-V) measurements were done with PMMA films for repeated annealing cycles at $100^{\circ}C$. 1-V measured at various delay times $(0{\sim}20sec)$ showed little change and the absence of hysteresis in the I-V characteristics with delay times, which eliminate the possibility of deep traps in the PMMA films. The observed thermal stability, smooth surfaces, dielectric constant, I-V behavior implies PMMA formed by spin coating can be used as an efficient gate dielectric layer in OTFTs.

  • PDF