• 제목/요약/키워드: Repaired effect

검색결과 191건 처리시간 0.024초

Nuclear DNA Damage and Repair in Normal Ovarian Cells Caused by Epothilone B

  • Rogalska, Aneta;Marczak, Agnieszka
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권15호
    • /
    • pp.6535-6539
    • /
    • 2015
  • This study was designed to assess, whether a new chemotherapeutic microtubule inhibitor, Epothilone B (EpoB, Patupilone), can induce DNA damage in normal ovarian cells (MM14.Ov), and to evaluate if such damage could be repaired. The changes were compared with the effect of paclitaxel (PTX) commonly employed in the clinic. The alkaline comet assay technique and TUNEL assay were used. The kinetics of DNA damage formation and the level of apoptotic cells were determined after treatment with IC50 concentrations of EpoB and PTX. It was observed that PTX generated significantly higher apoptotic and genotoxic changes than EpoB. The peak was observed after 48 h of treatment when the DNA damage had a maximal level. The DNA damage induced by both tested drugs was almost completely repaired. As EpoB in normal cells causes less damage to DNA it might be a promising anticancer drug with potential for the treatment of ovarian tumors.

LMC로 보강된 철근콘크리트 보의 파괴거동 (Fracture Behavior of Reinforced Concrete Beams Repaired by Latex-Modified Concrete)

  • 김성환;정원경;김기헌;김동호;윤경구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.475-480
    • /
    • 2003
  • Latex modification of concrete provides the material with higher flexural strength. This increase in flexural strength can attribute to the crack-arresting action of polymer in concrete, and also to the bonding they provide between the matrix and aggregates. This experimental study presents the fracture behavior of 12 flexural reinforced concrete beams repaired or strengthened by latex-modified concrete with the main experimental variables such as overlay thickness, strength thickness, and shear reinforcement. The results are as follow: All beam specimens having shear reinforcement were failed by delamination rupture at concrete interface at about 80% of ultimate loading after flexural cracking. All specimens overlayed and strengthened by latex-modified concrete (LMC) showed higher ultimate flexural strength than OPC control specimen, but lower than LMC control specimen. This increase in flexural strength could attribute to the high bonding they provide between the matrix and aggregates. All specimens except two shear unreinforced showed quite similar and consistent displacement behavior. The effect of overlay and strength thickness on the load-displacement relationship were a small at this study.

  • PDF

복합재료 패치로 보수된 AI 6061-T6 합금 구조물의 피로거동 연구 (The Study of the Fatigue Behavior of AI 6061-T6 Alloy Structure Repaired by Composite Patch)

  • 박종준;윤영기;김국기;윤희석
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.115-118
    • /
    • 2000
  • The development of high-strength fibers such as boron/epoxy and carbon/epoxy and adhesives has made it possible to repair cracked metallic plates by bonding reinforcing patches to the plate over the crack. In this study, aluminum 6061-T6 alloy plates with the high strength are applied to specimens with a cracked bolt hole to study the effect of diverse patch materials on the fatigue behavior of this structure. Additionally, the observation of the effort of different patch sizes on the specimen was performed. The results shows that the patch repair can improve the static strength by about 17% and the fatigue life by 200% compared with non-repaired case. And it was also revealed that the patching method along to crack growth direction is mort efficient in cost and weight reduction.

  • PDF

Strengthening of RC beams with prefabricated RC U cross-sectional plates

  • Demir, Ali;Tekin, Muhammed;Turali, Tezcan;Bagci, Muhiddin
    • Structural Engineering and Mechanics
    • /
    • 제49권6호
    • /
    • pp.673-685
    • /
    • 2014
  • The topic of this study is to strengthen cracked beams with prefabricated RC U cross-sectional plates. The damaged beams were repaired by epoxy based glue. The repaired beams were strengthened using prefabricated plates. The strengthening plates were bonded to the bottom and side faces of the beams by anchorage rods and epoxy. The strengthened beams were incrementally loaded up to maximum load capacities. The experimental results were satisfactory since the load carrying capacities of damaged beams were increased approximately 76% due to strengthening. It was observed that strengthening plates had a dominant effect on the performance of beams in terms of both the post-elastic strength enhancement and the ductility. The experimental program was supported by a three-dimensional nonlinear finite element analysis. The experimental results were compared with the results obtained from the beam modeled with ANSYS finite element program.

Repair of flange damage steel-concrete composite girders using CFRP sheets

  • Wang, Lianguang;Hou, Wenyu;Han, Huafeng;Huo, Junhua
    • Structural Engineering and Mechanics
    • /
    • 제55권3호
    • /
    • pp.511-523
    • /
    • 2015
  • Damaged steel-concrete composite girders can be repaired and retrofitted by epoxy-bonded carbon fiber-reinforced polymer (CFRP) sheets to the critical areas of tension flanges. This paper presents the results of a study on the behavior of damaged steel-concrete composite girders repaired with CFRP sheets under static loading. A total of seven composite girders made of I20A steel sections and 80mm-thick by 900mm-wide concrete slabs were prepared and tested. CFRP sheets and prestressed CFRP sheets were used to repair the specimens. The specimens lost the cross-sectional area of their tension flanges with 30%, 50% and 100%. The results showed that CFRP sheets had no significant effect on the yield loads of strengthened composite girders, but had significant effect on the ultimate loads. The yield loads, elastic stiffness, and ultimate bearing capacities of strengthened composite girders had been changed as a result of prestressed CFRP sheets, the utilization ratio of CFRP sheets could be effectively improved by applying prestress to CFRP sheets. Both the yield loads and ultimate bearing capacities had been changed as a result of steel beam's flange damage level and CFRP sheets could cover the girders' shortage of bearing capacity with 30% and 50% flange damage, respectively.

보강재로 보수된 균열평판의 파괴역학적 해석(II)-분리 영향에 대한 연구- (Fracture Mechanics Analysis of Cracked Plate Repaired by Patch(II) - The Analysis of Debonding Effect -)

  • 정기현;양원호;조명래
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2246-2251
    • /
    • 2000
  • Adhesive bonding repair methods has been used for a number of decades for construction of damaged structures. In order to evaluate the life of cracked aging aircraft structures, the repair technique which uses adhesively bonded boron/epoxy composite patches is being widely considered as a cost-effective and reliable method. But, this repair method contains many shortcomings. One of these shortcomings, debonding is major issue. When the adhesive shear stress increases, debonding is caused at the end of patch and plate interface. And this debonding is another defect except cracks propagation. In this paper, we assess safety at the cracked AI-plate repaired by Br/Epoxy composite patch. Firstly, from the view of fracture mechanics, reduction of stress intensity factors is determined by the variety of patch feature. Secondly, using the elastic analysis and finite element analysis, the distribution of adhesive shear stresses is acquired. Finally, The problem of how to optimize the geometric configurations of the patch has been discussed.

Impact of bonding defect on the tensile response of a composite patch-repaired structure: Effect of the defect position and size

  • N., Kaddouri;K., Madani;S.CH., Djebbar;M., Belhouari;R.D.S.G., Campliho
    • Structural Engineering and Mechanics
    • /
    • 제84권6호
    • /
    • pp.799-811
    • /
    • 2022
  • Adhesive bonding has seen rapid development in recent years, with emphasis to composite patch repairing processes of geometric defects in aeronautical structures. However, its use is still limited given its low resistance to climatic conditions and requirement of specialized labor to avoid fabrication induced defects, such as air bubbles, cracks, and cavities. This work aims to numerically analyze, by the finite element method, the failure behavior of a damaged plate, in the form of a bonding defect, and repaired by an adhesively bonded composite patch. The position and size of the defect were studied. The results of the numerical analysis clearly showed that the position of the defect in the adhesive layer has a large effect on the value of J-Integral. The reduction in the value of J-Integral is also related to the composite stacking sequence which, according to the mechanical properties of the ply, provides better load transfer from the plate to the repair piece through the adhesive. In addition, the increase in the applied load significantly affects the value of the J-Integral at the crack tip in the presence of a bonding defect, even for small dimensions, by reducing the load transfer.

Effect of adhesive application method on repair bond strength of composite

  • Hee Kyeong Oh;Dong Hoon Shin
    • Restorative Dentistry and Endodontics
    • /
    • 제46권3호
    • /
    • pp.32.1-32.10
    • /
    • 2021
  • Objectives: This study aimed to evaluate the effect of the application method of universal adhesives on the shear bond strength (SBS) of repaired composites, applied with different thicknesses. Materials and Methods: The 84 specimens (Filtek Z350 XT) were prepared, stored in distilled water for a week and thermocycled (5,000 cycles, 5℃ to 55℃). They were roughened using 400-grit sandpapers and etched with phosphoric acid. Then, specimens were equally divided into 2 groups; Single Bond Universal (SU) and Prime&Bond Universal (PB). Each group was subdivided into 3 subgroups according to application methods (n = 14); UC: 1 coat + uncuring, 1C: 1 coat + curing, 3C: 3 coats + curing. After storage of the repaired composite for 24 hours, specimens were subjected to the SBS test and the data were statistically analyzed by 2-way analysis of variance and independent t-tests. Specimens were examined with a stereomicroscope to analyze fracture mode and a scanning electron microscope to observe the interface. Results: Adhesive material was a significant factor (p = 0.001). Bond strengths with SU were higher than PB. The highest strength was obtained from the 1C group with SU. Bonding in multiple layers increased adhesive thicknesses, but there was no significant difference in SBS values (p = 0.255). Failure mode was predominantly cohesive in old composites. Conclusions: The application of an adequate bonding system plays an important role in repairing composite resin. SU showed higher SBS than PB and the additional layers increased the adhesive thickness without affecting SBS.

Effects of composite and metallic patch on the limit load of pressurized steel pipes elbow with internal defects under opening bending moment

  • Chaaben Arroussi;Azzedine Belalia;Mohammed Hadj Meliani
    • Structural Monitoring and Maintenance
    • /
    • 제10권3호
    • /
    • pp.221-242
    • /
    • 2023
  • Internal and external corrosion are common in pressure pipes used in a variety of industries, often resulting in defects that compromise their integrity. This economically and industrially significant problem calls for both preventive and curative technical solutions to guarantee the reliability of these structures. With this in mind, our study focuses on the influence of composite and metallic patch repairs on the limit loads of pipes, particularly elbows, the critical component of piping systems. To this end, we used the nonlinear extended finite element method (X-FEM) to study elbows, a priori corroded on the internal surface of the extrados section, then repaired with composite and metallic patches. In addition, the effect of the geometry of composite materials and metal patches was examined, in particular the effect of their thickness and material on the increase in limit loads of repaired structures. The results obtained provide information on the effectiveness and optimization of patch repair of corroded elbows, with the aim of increasing their service life.

알로덤이 건 봉합술 후 발생되는 유착 방지에 미치는 효과 (The Effect of Alloderm on Prevention of Adhesions following Tenorrhaphy in the Rabbits)

  • 최창용;송진우;김준혁;최환준;이영만
    • Archives of Plastic Surgery
    • /
    • 제34권6호
    • /
    • pp.765-770
    • /
    • 2007
  • Purpose: Peritendinous adhesion is one of the most notorious complication after the flexor tendon injury. In this study, $Alloderm^{(R)}$(LifeCell Corp., Branchburg, N.J.), which is the decellularized human dermal analogue with its intact native basement membrane components, was used for the prevention of peritendinous adhesions following flexor tendon repair. Methods: Thirty New Zealand white male rabbits were divided equally into 3 groups. In all groups, the flexor digitorum profundus of the third finger of the right back foot was cut totally and repaired by modified Kessler suture technique. Following tendon repair, $Alloderm^{(R)}$ was wrapt around the repaired tendon in the first group and sodium hyaluronate gel was sprayed to the operation field in the second group. In the control group, no external material was applied. The right back foot were immobilized for 6 weeks to optimize the formation of adhesion ingrowth. After death, the third finger that repaired tendons and sheaths was removed en bloc. We checked range of motion. and studied histologically for all groups. Results: The experimental groups had better range of motion than the control group. We checked that the range of motion was 73.5 degrees in $Alloderm^{(R)}$ group, 55.9 degrees in the hyaluronic acid group, and 38.3 degrees in the control group. in the histological study, the experimental group had less adhesions compared with the control group. Conclusion: This study concludes that $Alloderm^{(R)}$ can decrease peritendinous adhesions following flexor tendon repairs in rabbits. We think the method could be used in clinical cases.