• Title/Summary/Keyword: Repairable system

Search Result 128, Processing Time 0.026 seconds

Seismic performance of a resilient low-damage base isolation system under combined vertical and horizontal excitations

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Yang, T.Y.;Takewaki, Izuru;Mohammadhasani, Mohammad
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.383-397
    • /
    • 2018
  • Traditional base isolation systems focus on isolating the seismic response of a structure in the horizontal direction. However, in regions where the vertical earthquake excitation is significant (such as near-fault region), a traditional base-isolated building exhibits a significant vertical vibration. To eliminate this shortcoming, a rocking-isolated system named Telescopic Column (TC) is proposed in this paper. Detailed rocking and isolation mechanism of the TC system is presented. The seismic performance of the TC is compared with the traditional elastomeric bearing (EB) and friction pendulum (FP) base-isolated systems. A 4-storey reinforced concrete moment-resisting frame (RC-MRF) is selected as the reference superstructure. The seismic response of the reference superstructure in terms of column axial forces, base shears, floor accelerations, inter-storey drift ratios (IDR) and collapse margin ratios (CMRs) are evaluated using OpenSees. The results of the nonlinear dynamic analysis subjected to multi-directional earthquake excitations show that the superstructure equipped with the newly proposed TC is more resilient and exhibits a superior response with higher margin of safety against collapse when compared with the same superstructure with the traditional base-isolation (BI) system.

Estimation and Demonstration Test Plan for Availability with Weibull Lifetime and Lognormal Repair Time (와이블 수명분포와 대수정규 수리시간분포 하에서 가용도의 추정과 실증시험계획)

  • Seo, Sun-Keun
    • Journal of Applied Reliability
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • One important measure of performance for a repairable system is steady-state availability. In this paper, a method to estimate and establish confidence interval for the steady-state availability under Weibull lifetime and lognormal repair time distributions is proposed. Also, bias and mean squared error of a point estimator for an availability are investigated. In addition, a procedure to derive the sample size and critical value for availability demonstration test is presented and illustrated with a numerical example.

Optimal replacement policy following the expiration of payable RRNMW (유료 재생교체-비재생수리보증이 종료된 이후의 최적의 교체정책)

  • Jung, Ki-Mun
    • Journal of Applied Reliability
    • /
    • v.11 no.4
    • /
    • pp.409-417
    • /
    • 2011
  • In this paper, we consider a replacement model following the expiration of warranty. In other words, this paper proposes the optimal replacement policy for a repairable system following the expiration of payable renewing replacement-non-renewing minimal repair warranty. The expected cost rate per unit time from the user's perspective is used to determine the optimality of the replacement policy. Thus, we derive the expressions for the expected cycle length and the expected total cost to obtain the expected cost rate per unit time. Finally, the numerical examples are presented for illustrative purpose.

Cost Analysis of Manufacturer Under the Free Replacement, Pro-rata, Hybrid and Stepdown Warranty Policy (단계별 사후보증제도와 무료, 비율, 혼합형 보증제도에서 제조업자 입장의 비용분석)

  • 김원중;김재중
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.12 no.20
    • /
    • pp.39-45
    • /
    • 1989
  • This article is concerned with cost analysis in product warranty policy. The warranty cost can be different according to warranty rate and warranty renewal policy. In this paper the stepdown warranty is used. The warranty renewal policy is considered when the warranty is received upon free replacement period as item failing. Assuming the non repairable item as one item is sold, investigated manufacturer's cost in stepdown warranty policy. Also manufacturer's cost is calculated in the free replacement. pro-rata. hybrid policy. Numerical example is given over Weibull time to failure distribution, comparing stepdown warranty policy with free replacement, pro-rata, hybrid one in the manufacturer's point of view. The sensitivity analysis of warranty cost according to the number of warranty period step is included.

  • PDF

Aperiodic Preventive Maintenance Model and Parameter Estimation

  • Kim, Hee-Soo;Yum, Joon-Keun;Park, Dong-Ho
    • International Journal of Reliability and Applications
    • /
    • v.1 no.1
    • /
    • pp.15-26
    • /
    • 2000
  • This paper considers an aperiodic preventive maintenance (PM) model for repairable systems, in which the time intervals between two consecutive preventive maintenances are unequal. To propose such an aperiodic PM model, we assume that each PM reduces the current hazard rate by a certain amount which depends on the number of PMs performed previously. If the system fails between PMs, the minimal repair is performed and the hazard rate remains unchanged after the repair. We give the exact expressions for the hazard rate function for the aperiodic PM model. Based on the proposed aperiodic PM model, we suggest the maximum likelihood method to estimate the parameters characterizing the model and apply the method to the case of Weibull distribution. Numerical examples for estimating the parameters are presented for the purpose of illustration.

  • PDF

Prediction of MTBF Using the Modulated Power Law Process

  • Na, Myung-Hwan;Son, Young-Sook;Yoon, Sang-Hoo;Kim, Moon-Ju
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.2
    • /
    • pp.535-541
    • /
    • 2007
  • The Non-homogeneous Poisson process is probably the most popular model since it can model systems that are deteriorating or improving. The renewal process is a model that is often used to describe the random occurrence of events in time. But both these models are based on too restrictive assumptions on the effect of the repair action. The Modulated Power Law Process is a suitable model for describing the failure pattern of repairable systems when both renewal-type behavior and time trend are present. In this paper we propose maximum likelihood estimation of the next failure time after the system has experienced some failures, that is, Mean Time Between Failure for the MPLP model.

  • PDF

A Study on the 2 Key Bridge (2 Key Bridge에 대한 연구)

  • Park, Jong-Hee
    • Journal of Technologic Dentistry
    • /
    • v.22 no.1
    • /
    • pp.57-67
    • /
    • 2000
  • The 2 key bridge system has been developed to make crownless bridges without damaging sound teeth. Strong bridge work of single or multiple pontics is possible for replacing both anterior and posterior teeth. It is incresingly considerde to be unacceptable, by dentists as well as patients, to fully grind down healthy elements in order fit a conventional bridges. Because this technique uses a combination of hole and adhesive fitting, it has a number of adventages over etched bridges and conventional bridges: - In comparison with conventional bridges, hardly and healthy dental tissue is sacrificed - Due to the lack of crown edges there is no periodontal pressure, as is the case with conventional bridges - The treatment procedure is straight forward and involves less time than conventional bridges. - The treatment is largely resiverable and repairable

  • PDF

Optimal Replacement Policy for a Repairable System with Combination Warranty (혼합보증이 있는 수리 가능한 시스템에 대한 최적의 교체정책)

  • 정기문
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.1
    • /
    • pp.107-117
    • /
    • 2002
  • In this paper we present the optimal replacement policies following the expiration of combination warranty. We consider two types of combination warranty policies: renewing warranty and non-renewing warranty. The criterion used to determine the optimal replacement period is the expected cost rate per unit time from the user'perspective. The optimal maintenance period following the expiration of combination warranty is obtained. Some numerical examples are presented for illustrative purpose.

Cost analysis of RRNRW from the manufacturer's perspective (재생교체-비재생수리보증에 대한 생산자 측면의 비용분석)

  • Jung, Ki Mun
    • Journal of Applied Reliability
    • /
    • v.12 no.4
    • /
    • pp.255-263
    • /
    • 2012
  • This paper considers the cost analysis from the manufacturer's point of view for renewing replacement and non-renewing repair warranty(RRNRW) of a repairable system. To do so, we consider the renewing replacement and non-renewing repair warranty, which is proposed by Jung(2011). To analysis the expected warranty cost from the manufacturer's perspective for renewing replacement and non-renewing warranty, we obtain the expected total warranty cost and the expected warranty length which are very important information for the manufacturer. Finally, the numerical examples are presented for illustrative purpose.

Estimation of Warranty Cost (품질하자보증비의 추정)

  • 최정호;이상용
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.43
    • /
    • pp.357-364
    • /
    • 1997
  • After the buyer purchases the product, the seller's role does not end. If the product fails to function properly before the end of the warranty period, the seller is responsible for its repair or replacement under the seller's warranty policy. There are two common types of warranty policies: the free replacement warranty and the rebate warranty. Under the free replacement warranty policy, replacement or repairs during the warranty period are provided by the seller free of charge to the buyer. Under the rebate warranty policy, a failed item is replaced by a new one or is repaired at a cost to the age of the failed item. The rebate warranty is most often used for items such as a battery or an automobile tire which wear out and must be replaced at failure. This paper proposes a easy way of estimating the warranty cost under the free replacement warranty policy assuming an exponential product failure function on repairable products.

  • PDF