• Title/Summary/Keyword: Repair enzyme

Search Result 80, Processing Time 0.024 seconds

Association of Two Polymorphisms of DNA Polymerase Beta in Exon-9 and Exon-11 with Ovarian Carcinoma in India

  • Khanra, Kalyani;Panda, Kakali;Bhattacharya, Chandan;Mitra, A.K.;Sarkar, Ranu;Bhattacharyya, Nandan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1321-1324
    • /
    • 2012
  • Background: DNA polymerase beta ($pol{\beta}$) is a key enzyme in the base excision repair pathway. It is 39kDa protein, with two subunits, one large subunit of 31 kDa having catalytic activity between exon V to exon XIV, and an 8 kDa smaller subunit having single strand DNA binding activity. Exons V to VII have double strand DNA binding activity, whereas exons VIII to XI account for the nucleotidyl transferase activity and exons XII to XIV the dNTP selection activity. Aim: To examine the association between $pol{\beta}$ polymorphisms and the risk of ovarian cancer, the present case control study was performed using 152 cancer samples and non-metastatic normal samples from the same patients. In this study, mutational analysis of $pol{\beta}$ genomic DNA was undertaken using primers from exons IX to XIV - the portion having catalytic activity. Results: We detected alteration in DNA polymerase beta by SSCP. Two specific heterozygous point mutations of $pol{\beta}$ were identified in Exon 9:486, A->C (polymorphism 1; 11.18%) and in Exon 11:676, A->C (polymorphism 2; 9.86%). The correlation study involving polymorphism 1 and 4 types of tissue showed a significant correlation between mucinous type with a Pearson correlation value of 4.03 (p=0.04). The association among polymorphism 2 with serous type and stage IV together have shown Pearson ${\chi}^2$ value of 3.28 with likelihood ratio of 4.4 (p=0.07) with OR =2.08 (0.3-14.55). This indicates that there is a tendency of correlation among polymorphism 2, serous type and stage IV, indicating a risk factor for ovarian cancer. Conclusion: Hence, the results indicate that there is a tendency for $pol{\beta}$ polymorphisms being a risk factor for ovarian carcinogenesis in India.

Identification and Cloning of jipA Encoding a Polypeptide That Interacts with a Homolog of Yeast Rad6, UVSJ in Aspergillus nidulans

  • Cho, Jae-Han;Yun, Seok-Soong;Jang, Young-Kug;Cha, Mee-Jeong;Kwon, Nak-Jung;Chae, Suhn-Kee
    • Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.46-51
    • /
    • 2003
  • RAD6 in yeast mediates postreplication DNA repair and is responsible for DNA-damage induced mutations. RAD6 encodes ubiquitin-conjugating enzyme that is well conserved among eukaryotic organisms. However, the molecular targets and consequences of their ubiquitination by Rad6 have remained elusive. In Aspergillus nidulans, a RAD6 homolog has been isolated and shown to be an allele of uvs). We screened a CDNA library to isolate UVSJ-interacting proteins by the yeast two-hybrid system. JIPA was identified as an interactor of UVSJ. Their interaction was confirmed in vitro by a GST-pull down assay. JIPA was also able to interact with mutant UVSJ proteins, UVSJl and the active site cysteine mutant UVSJ-C88A. The N- and the C-terminal regions of UVSJ required for the interaction with UVSH, a RAD18 homolog of yeast which physically interacts with Rad6, were not necessary for the JIPA and UVSJ interactions. About 1.4 kb jipA transcript was detected in Northern analysis and its amount was not significantly increased in response to DNA-damaging agents. A genomic DNA clone of the jipA gene was isolated from a chromosome I specific genomic library by PCR-sib selection. Sequence determination of genomic and cDNA of jipA revealed an ORF of 893 bp interrupted by 2 introns, encoding a putative polypeptide of 262 amino acids. JIPA has 33% amino acid sequence identity to TIP41 of Saccharomyces cerevisiae which negatively regulates the TOR signaling pathway.

NMR study of the interaction of T$_4$ Endonuclease V with DNA

  • 이봉진;유준석;임형미;임후강
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.267-267
    • /
    • 1994
  • In order to obtain insight into the mechanism by which DNA containing a thymine photo-dimer is recognized by the excision repair enzyme, T$_4$ endonuclease V, we have taken NMR study of this protein and its complex with oligonucleotides. The conformations of five different DNA duplexes DNA I : d(GCGGATGGCG).d(CGCCTACCGC), DNA II d(GCGGTTGGCG) .d(CGCCAACCGC), DNA III : d(GCGGT ^ TGGCG) .d(CGCCAACCGC), DNA IV d(GCGGGCGGCG).d(CGCCCGCCGC) and DNA V d(GCGGCCGGCG) . d(CGCCGGCCGC) were studied by $^1$H NMR. The NMR spectra of these five DNA duplexes in the absence of the enzyme clearly show that the formation of a thymine dimer within the DNA induces only a minor distortion in the structure, and that the overall structure of B type DNA is retained. The photo-dimer formation is found to cause a large change in chemical shifts at the GC7 base pair, which is located at the 3'-side of the thymine dimer, accompanied by the major conformational change at the thymine dimer site. The binding of a mutant T$_4$ endonuclease V (E23Q), which is unable to digest DNA containing a thymine dimer, to the DNA duplex d(GCGGT ^ TGGCG)ㆍd(CGCCAACCGC) causes a large down-field shift in the imino proton resonance of GC7. Therefore, this position is thought to be either the crucial point of the interaction wi th T$_4$ endonuclease V, or the si to of a conformational change in the DNA caused by the binding of T$_4$ endonuclease V. Usually, it is very difficult to assign NMR peaks in DNA * protein complex because of severe peak overlaps. In order to overcome these peak overlaps, we used a method of deuterium incorporation.

  • PDF

Phaleria macrocarpa Suppresses Oxidative Stress in Alloxan-induced Diabetic Rats by Enhancing Hepatic Antioxidant Enzyme Activity

  • Triastuti, Asih;Park, Hee-Juhn;Choi, Jong-Won
    • Natural Product Sciences
    • /
    • v.15 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • Oxidative stress is caused by an imbalance between the production of reactive oxygen and an ability of a biological system, to readily detoxify the reactive intermediates or easily repair the resulting damage. It has been suggested that developmental alloxan-induced liver damage is mediated through increases in oxidative stress. The anti-diabetic effect and antioxidant activity of Phaleria macrocarpa (PM) fractions were investigated in alloxan-induced diabetic rats. After two weeks administration of PM, the liver antioxidant enzyme and hyperglycemic state were evaluated. The results showed that oral administration of PM treatments reduced blood glucose levels in diabetic rats by oral administration (P < 0.05). Serum glutamic-oxaloacetic transaminase (sGOT) and serum glutamic-pyruvate-transaminase (sGPT) were also diminished by PM supplementation. The superoxide dismutase (SOD), catalase (CAT) and glutathione-peroxidase (GPx) activities, and glutathione (GSH) level in the alloxan-induced diabetic rats were significantly decreased (P < 0.05) compared to those in the normal rats but were restored by PM treatments. PM fractions also repressed the level of malondialdehyde (MDA) in the liver. Glutathione reductase (GR), glutathione-S-transferase (GST) and $\gamma$-glutamylcysteine synthase (GCS) were also reduced in alloxan-induced diabetic rats. PM fractions could restore the GR and GST activities, but the GCS activity was not affected in rat livers. From the results of the present study, the diabetic effect of the butanol fraction of PM against alloxan-induced diabetic rats was concluded to be mediated either by preventing the decline of hepatic antioxidant status or due to its indirect radical scavenging capacity.

The DNA Repair Gene ERCC6 rs1917799 Polymorphism is Associated with Gastric Cancer Risk in Chinese

  • Liu, Jing-Wei;He, Cai-Yun;Sun, Li-Ping;Xu, Qian;Xing, Cheng-Zhong;Yuan, Yuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.6103-6108
    • /
    • 2013
  • Objective: Excision repair cross-complementing group 6 (ERCC6) is a major component of the nucleotide excision repair pathway that plays an important role in maintaining genomic stability and integrity. Several recent studies suggested a link of ERCC6 polymorphisms with susceptibility to various cancers. However, the relation of ERCC6 polymorphism with gastric cancer (GC) risk remains elusive. In this sex- and age-matched case-control study including 402 GC cases and 804 cancer-free controls, we aimed to investigate the association between a potentially functional polymorphism (rs1917799 T>G) in the ERCC6 regulatory region and GC risk. Methods: The genotypes of rs1917799 were determined by Sequenom MassARRAY platform and the status of Helicobacter pylori infection was detected by enzyme-linked immunosorbent assay. Odd ratios (ORs) and 95% confidential interval (CI) were calculated by logistic regression analysis. Results: Compared with the common TT genotype, the ERCC6 rs1917799 GG genotype was associated with increased GC risk (adjusted OR=1.46, 95%CI: 1.03-2.08, P=0.035). When compared with (GT+TT) genotypes, the GG genotype also demonstrated a statistical association with increased GC risk (adjusted OR=1.38, 95%CI: 1.01-1.89, P=0.044). This was also observed for the male subpopulation (GG vs. TT: adjusted OR=1.71, 95%CI: 1.12-2.62, P=0.013; G allele vs. T allele: adjusted OR=1.32, 95%CI: 1.07-1.62, P=0.009). Genetic effects on increased GC risk tended to be enhanced by H. pylori infection, smoking and drinking, but their interaction effects on GC risk did not reach statistical significance. Conclusions: ERCC6 rs1917799 GG genotype might be associated with increased GC risk in Chinese, especially in males.

Docking and QSAR studies of PARP-1 Inhibitors (PARP-1 억제제의 Docking 및 QSAR 연구)

  • Kim, Hye-Jung;Cho, Seung-Joo
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.210-218
    • /
    • 2004
  • Poly(ADP-ribose)polymerase-1 (PARP-1) is a nuclear enzyme involved in various physical functions related to genomic repair, and PARP inhibitors have therapeutic application in a variety of neurological diseases. Docking and the QSAR (quantitative structure-activity relationships) studies for 52 PARP-1 inhibitors were conducted using FlexX algorithm, comparative molecular field analysis (CoMFA), and hologram quantitative structure-activity relationship analysis (HQSAR). The resultant FlexX model showed a reasonable correlation (r$^{2}$ = 0.701) between predicted activity and observed activity. Partial least squares analysis produced statistically significant models with q$^{2}$ values of 0.795 (SDEP=0.690, r$^{2}$=0.940, s=0.367) and 0.796 (SDEP=0.678, r$^{2}$ = 0.919, s=0.427) for CoMFA and HQSAR, respectively. The models for the entire inhibitor set were validated by prediction test and scrambling in both QSAR methods. In this work, combination of docking, CoMFA with 3D descriptors and HQSAR based on molecular fragments provided an improved understanding in the interaction between the inhibitors and the PARP. This can be utilized for virtual screening to design novel PARP-1 inhibitors.

  • PDF

Antigenotoxicity of Vegetable or Fruit Extract against Cigarette Smoke Condensate (담배연기응축물의 DNA 손상작용과 야채 및 과일추출물의 보호효과)

  • Lee, Hyeong-Ju;Heo, Chan;Kim, Nam-Yee;Heo, Moon-Young
    • YAKHAK HOEJI
    • /
    • v.55 no.3
    • /
    • pp.251-259
    • /
    • 2011
  • Cigarette smoke condensate (CSC) is known to be carcinogenic compound. CSC contains many organic compounds such as polycyclic aromatic hydrocarbons (PAHs), and heterocyclic amine compounds (HCAs). Reactive oxygen species (ROS) are also generated and induce oxidative DNA damage during the metabolism of CSC. The rat microsome mediated and DNA repair enzyme treated comet assays together with conventional comet assay were performed to evaluate the mechanisms of CSC genotoxicity. The organic extract of CSC induced oxidative and microsome mediated DNA damage. Vitamin C as a model antioxidant reduced DNA damage in endonuclease III treated comet assay. One of flavonoid, galangin as a CYP1A1 inhibitor, reduced DNA damage in the presence of S-9 mixture. The ethanol extracts of the mixed vegetables (BV) or the mixed fruits (BF) showed potent inhibitory effects against CSC induced DNA damage with oxidative DNA lesions and in the prescence of S-9 mixture. These results indicate that BV and BF could prevent CSC-induced cellular DNA damage by inhibiting oxidative stress and suppressing cytochrome P450 in mammalian cells.

A Study for Regulation of Ethanol-inducible $P_{450}$(CYP2E1) on $CCI_4$-induced Hepatic Damage

  • Park, Sun-Mi;Park, Eun-Jeon;Ko, Geon-Il;Kim, Jae-Baek;Sohn, Dong-Hwan
    • Archives of Pharmacal Research
    • /
    • v.18 no.3
    • /
    • pp.179-182
    • /
    • 1995
  • Previous study showed that $CCl_4$ administration evoked a rapid decrease in cytochrome $P_{450}$ 2E1 protein soon after the exposure due to posttranslational inhibition(Biochem. Biophys. Res. Commun. 179:449-454, 1991). In this report, aniline hydroxylase and the amounts of immunoreactive $P_{450}$ 2E1 were rapidly decreased during day 1 to 2 and recovered during day 3 to 4 after a single dose of $CCl_4$. The activity of pentoxyresorufin-O-dealkylase was also suppressed at day 1 and began to repair from day 2. However, the decrease in immunoreactive $P_{450}$ 2C content was not observed. The decreases in $P_{450}$ 2E1 enzyme activity and immunoreactive protein by acute $CCl_4$ treatment were accompanied by a decline in $P_{450}$ 2E1 mRNA level. The data thus suggested a pretranslational reduction of $P_{450}$ 2E1 during day 1 to 2 after acute $CCl_4$ treatment.

  • PDF

Expression and Characterization of the Human rpS3 in a Methylotrophic Yeast Pichia pastoris

  • Kim, Joon;Lee, Jae-Yung;Jung, Sang-Oun;Youn, Bu-Hyun;Kwon, Oh-Sik
    • Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.88-92
    • /
    • 2000
  • A human ribosomal protein S3 (rpS3), which also functions as a DNA repair enzyme(UV endonuclease III), was expressed in a methylotrophic yeast, Pichia pastoris, and biochemically characterized. UV endonuclease activity was preiously characterized, and this activity of mammalian rpS3 was found to be non-specfic upon purification and storage. Under the Pichia expression system, the subcloned cDNA of the human rpS3 gene revealed a peptide of 42 kDa by SDS-PAGE and Western blot. The secreted form of human rpS3 rendered no endonuclease activity while the intracellular form showed UV specific endonuclease activity by the nick circle assay.

  • PDF

Effects of selected phytochemicals and fruit extracts on Poly(ADP-ribose) polymerase (PARP) activity induced by H2O2 in MCF-7 breast cancer cells (식물생리활성물질과 과일류 추출물이 MCF-7 유방암 세포에서 H2O2로 유도된 Poly(ADP-ribose) Polymerase (PARP) 활성도에 미치는 영향)

  • Yoon, Hyungeun
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.499-502
    • /
    • 2019
  • Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme which is activated in response to DNA damage, and which mediates DNA repair. PARP inhibitors can be used to reduce resistance of cancer cells to anticancer treatments. The objective of this study was to investigate the effects of selected phytochemicals and fruit extracts on PARP activation in MCF-7 breast cancer cells subjected to oxidative stress. Pre-incubation with epigallocatechin gallate (EGCG), apple extract (AE), cranberry extract (CE), or grape extract (GE) for 2 hours at test concentrations reduced PARP activity induced upon treatment with hydrogen peroxide in a dose-dependent manner (p<0.05). GE was found to be the most efficient PARP inhibitor among the fruit extracts examined. These results suggest that phytochemicals of fruit extracts might be used as PARP inhibitors in order to assist anticancer agents.