• Title/Summary/Keyword: Repair bond strength

Search Result 135, Processing Time 0.027 seconds

An Experimental Study on the Effect of Concrete Surface Treatment Methods on the Bond Strength of Metal Spray Coating (콘크리트 표면처리 방법이 콘크리트 표면 금속용사 피막의 부착강도에 미치는 영향에 관한 실험적 연구)

  • Park, Jin-Ho;Kim, Sang-Yeol;Lee, Han-Seung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.1
    • /
    • pp.147-154
    • /
    • 2020
  • The exterior finishing of reinforced concrete buildings is one of the important factors to prevent durability and prevent natural environment or disaster such as temperature, snow, wind, rain from the outside as well as external design of buildings. Finishing methods can be divided into wet and dry methods. The wet method using paint is relatively easy to construct, but it requires repair and reinforcement every 1 to 5 years and requires a lot of LCC for maintenance. Finishing method using panel has good durability, but it is difficult to install and expensive. Therefore, in this paper, we evaluate the bond strength for the application of the metal spray method in order to overcome the problems of existing methods. Experimental results show that the sandblast + surface roughness agent(S-R(Y)) has a roughness of 41.16 ㎛ and the bond strength is about 3.19 MPa, which is the highest bond strength. In addition, the grinding + surface roughness agent(G-R(Y)) application showed roughness of about 36.59 ㎛ and secured the bond strength performance of 2.94 MPa.

Evaluation of Durability and Bond Strength of Polymer Powder-Modified Mortars With Accelerators (급결제를 이용한 분말수지 혼입 폴리머 시멘트 모르타르의 부착강도 및 내구성 평가)

  • Lee Chol Woong;Mun Kyoung Ju;Song Hun;Kim Byeang Cheol;Choi Nak Woon;Soh Yang Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.559-562
    • /
    • 2005
  • The purpose of this study is to evaluate the durability and bond strength of polymer powder-modified mortars with special accelerator components. The mortars were prepared with various polymer-binder ratios and applied to the concrete substrate as a repair material. Bond strength, flexural and compressive strengths, freeze-thaw resistance and carbonation resistance were measured for the test. As a result, bond strength of the mortars was increased with an increase in the polymer-cement ratio, and freeze-thaw resistance and carbonation resistance were significantly improved with increasing polymer-cement ratio also.

  • PDF

Proposal of Bond Strength Evaluation Method for Overlay Concrete at Field (유한요소해석을 이용한 현장 덧씌우기 콘크리트의 부착강도 평가 방법 제안)

  • Lee, Bong-Hak;Hong, chang-Woo;Lee, Joo-Hyung;Kim, Seong-Hwan
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.295-300
    • /
    • 2001
  • Significant improvements in bond strength between new and existing concrete can be achieved through the modification of the new concrete by latex modification. But, no test method has been adopted as a standard to measure the bond strength between the concrete used to repair and the substrate being repaired. The performance of old and the new concrete construction defends upon band strength between old and the new concrete. Current adhesion strength measurement method is inaccurate method that ignore effect of stress concentration by shape of specimens. Therefore, this research calculates stress concentration coefficient using finite element analysis and direction tensile strength test (pull-off test). The result shows that the required core depth is 2.5 cm. Elastic modulus and overlay thickness do not influence in stress concentration.

  • PDF

Fundamental properties of repair mortar using CNT impregnated in porous material (다공성 소재에 함침된 CNT를 이용한 보수모르타르의 기초적 특성)

  • Kim, Young Min;Kwon, Hyun Woo;Lee, Gun Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.67-68
    • /
    • 2021
  • In this study, Repair mortar was prepared using CNT powder with improved dispersibility and its characteristics were analyzed. As a result of the experiment, the compressive strength and flexural strength were found to be at similar levels compared to Plain without CNT. In addition, as a result of the drying shrinkage test, it was found that the drying shrinkage amount was decreased due to the effect of CNT mixed into the porous material filling the internal pores of the repair mortar.. The Bond strength of the repair mortar was at a similar level regardless of whether CNT was added or not

  • PDF

An Experimental Study on the Strength and Permeability Characteristics of Repair Mortar (보수용 모르타르의 강도 및 투과특성에 관한 연구)

  • Paik, Shin-Won
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.105-109
    • /
    • 2003
  • Structure surfaces damaged due to many causes are repaired by several special mortars. But wide studies about the permeability of these mortars were rarely conducted. In this study compressive strength test, flexural strength test and bond strength test of these mortars were conducted. And chloride ion penetration test was also conducted to explore the permeability charcteristics of selected repair mortars. This test was carried out following the standard ASTM C1202-91. Colouriemtric penetration depth can be drawn from these test results using a relationship equation between colourimetric penetration depth and charge passed which C. Andrade suggested. Diffusion coefficient can be calculated by CTH rapid method. To the end, the present study can provide a firm base for the application of repair mortars to concrete structures.

Evaluation of Underwater Dam Concrete Structure Repair by Patching Material (댐 시설물 수중구조체 보수용 패칭재료의 적용 가능성 평가)

  • Kim, Wan-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.77-81
    • /
    • 2009
  • This study was performed to evaluate applicability of patching materials for underwater dam concrete structure. Two kinds of patching materials was investigated. Laboratory experimentals were conducted by workability, compressive strength, bond strength, chloride ion penetration, abrasion resistance. Test results showed that the most performances are relatively good except chloride ion penetration.

Shear bond strength of a new self-adhering flowable composite resin for lithium disilicate-reinforced CAD/CAM ceramic material

  • Erdemir, Ugur;Sancakli, Hande Sar;Sancakli, Erkan;Eren, Meltem Mert;Ozel, Sevda;Yucel, Taner;Yildiz, Esra
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.434-443
    • /
    • 2014
  • PURPOSE. The purpose of this study was to evaluate and compare the effects of different surface pretreatment techniques on the surface roughness and shear bond strength of a new self-adhering flowable composite resin for use with lithium disilicate-reinforced CAD/CAM ceramic material. MATERIALS AND METHODS. A total of one hundred thirty lithium disilicate CAD/CAM ceramic plates with dimensions of $6mm{\times}4mm$ and 3 mm thick were prepared. Specimens were then assigned into five groups (n=26) as follows: untreated control, coating with $30{\mu}m$ silica oxide particles ($Cojet^{TM}$ Sand), 9.6% hydrofluoric acid etching, Er:YAG laser irradiation, and grinding with a high-speed fine diamond bur. A self-adhering flowable composite resin (Vertise Flow) was applied onto the pre-treated ceramic plates using the Ultradent shear bond Teflon mold system. Surface roughness was measured by atomic force microscopy. Shear bond strength test were performed using a universal testing machine at a crosshead speed of 1 mm/min. Surface roughness data were analyzed by one-way ANOVA and the Tukey HSD tests. Shear bond strength test values were analyzed by Kruskal-Wallis and Mann-Whitney U tests at ${\alpha}=.05$. RESULTS. Hydrofluoric acid etching and grinding with high-speed fine diamond bur produced significantly higher surface roughness than the other pretreatment groups (P<.05). Hydrofluoric acid etching and silica coating yielded the highest shear bond strength values (P<.001). CONCLUSION. Self-adhering flowable composite resin used as repair composite resin exhibited very low bond strength irrespective of the surface pretreatments used.

Adhesion Strength and Other Mechanical Properties of SBR Modified Concrete

  • Chmielewska, Bogumila
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.3-8
    • /
    • 2008
  • Polymer-cement composites are known repair materials. The aim of this work is to investigate the influence of various amount of dispersion of carboxylated styrene-butadience copolymer on the selected mechanical properties of polymer-cement concrete (PCC) and on its adhesion to ordinary concrete. The compressive, flexural and tensile strengths as well as frost resistance and fracture resistance of the composites are tested. Adhesion strength of PCC to ordinary concrete, as one of most important performance of good repair material is evaluated and analyzed using three test methods. The results obtained in standard pull-off test are compared with the two other tests. The first one, which is an adaptation of WST (wedge splitting test) characterizes crack propagation in the plane of bond created during repair. In the second test the resistance to shear is a measure of adhesion strength.

Optimum Mix Proportion of Latex Modified Repair Mortar for Agricultural Concrete Structures (농업용 콘크리트 구조물을 위한 라텍스 개질 보수용 모르타르의 적정 배합비 도출)

  • Won, Jong-Pil;Lee, Jae-Young;Park, Chan-Gi;Park, Seong-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.37-46
    • /
    • 2007
  • The service life of agricultural concrete structures is designed in about 30 to 100 years, but actual service lift is estimated in an average 18 years. Therefore, as the service life of the agricultural concrete structures increases, necessity of repair by aging from various environment condition exposure increases. This study was to determinate the optimum mix proportion of latex modified repair mortar and to improve the durability performance of agricultural concrete structures. The physical and mechanical tests of latex modified repair mortar were performed. Tests of flow, compressive strength, flexural strength and bond strength tests were conducted. Test results show that the optimum nex proportion of latex modified repair mortar, when used in 5% latex volume fraction (weight of cement), 1.5% antifoaming agent (weight of latex), 0.2% PVA fiber volume fraction, 1:2 (binder-sand ratio), 10% silica fume replacement ratio (weight of cement), could result in best performance for the repair of agricultural concrete structures.

A STUDY ON THE SHEAR BOND STRENGTH OF ESTHETIC RESTORATIVE MATERIALS TO DENTAL AMALGAM (아말감과 심미성 수복재료와의 전단 결합강도에 관한 연구)

  • Jeong, Hye-Jeon;Min, Byung-Soon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.129-141
    • /
    • 1995
  • Composite resin and glass-ionomer cement can be used for the purpose of repair of defective amalgam restoration. The purpose of this study was to evaluate of shear bond strength of esthetic restorative materials to dental amalgam. The materials used in this study were Photo Clearfil Bright(light curing composite resin), Clearfil F II(chemical curing composite resin), Fuji II LC(light curing glass-ionomer cement), Fuji II (chemical curing glass-ionomer cement), All-Bond 2(intermediary), and Scotchbond Multi-Purpose (intermediary). A total of 120 acrylic cylinders with amalgam were divided into 8 groups After amalgam condensation, all specimens were stored for 48 hours in water at $37^{\circ}C$ and tested with Instron universal testing machine between amalgam and composite resins and glass-ionomer cements. The data were analyzes statiscally by ANOVA and Duncan test. The following results obtained ; 1. The shear bond strength of bonded composite resin to amalgam was higher than bonded glass-ionomer cement(P<.001). 2. The group 4 had highest shear bond strength with 15.45kgf/$cm^2$ and the group 5 had lowest shear bond strenght with 3.26kgf/$cm^2$(P<.001). 3. In the group 3, 4, 5, 6, the group 3, 4 with All-Bond 2 had higher shear bond strength than the group 5, 6 with Scotch bond MP both in light-curing and in chemical curing. 4. Both in composite resin and glass-ionomer cement, chemical curing materials had higher shear bond stength than light curing materials(P<.001).

  • PDF