• Title/Summary/Keyword: Repair bond strength

Search Result 135, Processing Time 0.02 seconds

The effect of different bonding systems on shear bond strength of repaired composite resin (접착 시스템이 수리된 복합 레진의 전단 결합 강도에 미치는 영향)

  • Seon, Eun-Mi;Kim, Hyeon-Cheol;Hur, Bock;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.2
    • /
    • pp.125-132
    • /
    • 2008
  • The purpose of this study is to compare the shear bond strength of repaired composite resin with different bonding agents and evaluate the effect of bonding agents on composite repair strength. Forty composite specimens (Z-250) were prepared and aged for 1 week by thermo cycling between 5 and $55^{\circ}C$ with a dwell time of 30s. After air abrasion with $50\;{\mu}m$ aluminum oxide, following different bonding agents were applied (n = 10); SB group: Scotchbond multipurpose adhesive (3 step Total-Etch system); XE group: Clearfil SE bond (2 step Self-Etch system); XP group: XP bond (2 step Total-Etch system); XE group: Xeno III (1 step Self-Etch system). After bonding procedure was completed, new composite resin (Z-250) was applied to the mold and cured. For control group. 10 specimens were prepared. Seven days after repair, shear bond strength was measured. Data was statistically analyzed using one-way ANOVA and Tukey's test (p<0.05). The means and standard deviations of shear bond strength (MPa ${\pm}$ S.D.) per group were as follows: SB group: 17.06; SE group: 19.10; XP group: 14.44; XE group: 13.57; Control Group: 19.40. No significant difference found in each group. Within the limit of this study, it was concluded that the different type of bonding system was not affect on the shear bond strength of repaired composite resin.

Predicting the bond between concrete and reinforcing steel at elevated temperatures

  • Aslani, Farhad;Samali, Bijan
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.643-660
    • /
    • 2013
  • Reinforced concrete structures are vulnerable to high temperature conditions such as those during a fire. At elevated temperatures, the mechanical properties of concrete and reinforcing steel as well as the bond between steel rebar and concrete may significantly deteriorate. The changes in the bonding behavior may influence the flexibility or the moment capacity of the reinforced concrete structures. The bond strength degradation is required for structural design of fire safety and structural repair after fire. However, the investigation of bonding between rebar and concrete at elevated temperatures is quite difficult in practice. In this study, bond constitutive relationships are developed for normal and high-strength concrete (NSC and HSC) subjected to fire, with the intention of providing efficient modeling and to specify the fire-performance criteria for concrete structures exposed to fire. They are developed for the following purposes at high temperatures: normal and high compressive strength with different type of aggregates, bond strength with different types of embedment length and cooling regimes, bond strength versus to compressive strength with different types of embedment length, and bond stress-slip curve. The proposed relationships at elevated temperature are compared with experimental results.

Comparison of traditional and simplified methods for repairing CAD/CAM feldspathic ceramics

  • Carrabba, Michele;Vichi, Alessandro;Louca, Chris;Ferrari, Marco
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.4
    • /
    • pp.257-264
    • /
    • 2017
  • PURPOSE. To evaluate the adhesion to CAD/CAM feldspathic blocks by failure analysis and shear bond strength test (SBSt) of different restorative systems and different surface treatments, for purpose of moderate chipping repair. MATERIALS AND METHODS. A self-adhering flowable composite (Vertise Flow, Kerr) containing bi-functional phosphate monomers and a conventional flowable resin composite (Premise Flow, Kerr) applied with and without adhesive system (Optibond Solo Plus, Kerr) were combined with three different surface treatments (Hydrofluoric Acid Etching, Sandblasting, combination of both) for repairing feldspathic ceramics. Two commercial systems for ceramic repairing were tested as controls (Porcelain Repair Kit, Ultradent, and CoJet System, 3M). SBSt was performed and failure mode was evaluated using a digital microscope. A One-Way ANOVA (Tukey test for post hoc) was applied to the SBSt data and the Fisher's Exact Test was applied to the failure analysis data. RESULTS. The use of resin systems containing bi-functional phosphate monomers combined with hydrofluoric acid etching of the ceramic surface gave the highest values in terms of bond strength and of more favorable failure modalities. CONCLUSION. The simplified repairing method based on self-adhering flowable resin combined with the use of hydrofluoric acid etching showed high bond strength values and a favorable failure mode. Repairing of ceramic chipping with a self-adhering flowable resin associated with hydrofluoric acid etching showed high bond strength with a less time consuming and technique-sensitive procedure compared to standard procedure.

THE EFFECTS OF SURFACE TREATMENT OF FRACTURED METAL-CERAMIC CROWN ON BOND STRENGTH OF REPAIR RESIN (파절된 도재전장관의 표면처리 방법에 따른 수복레진의 접합강도에 관한 연구)

  • Jeong, Ae-Ri;Vang, Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.117-127
    • /
    • 1991
  • The purpose of this study was to evaluate the effect of surface treatment of fractured metal-ceramic crown on bond strength of porcelain repair resin. The specimens were divided into two groups for metal specimens add five groups for porcelain specimens by surface treatment methods. the metal specimens were treated by 2 methods. : micro-sandblasting with $50{\mu}m$ aluminum oxide and grinding with diamond bur. The porcelain specimens were treated by 5 methods : micro-sandblasting with $50{\mu}m$ aluminum oxide, grinding with diamond bur, etching with porcelain etching agent, combination of micro-sandblasting and etching procedure, and combination of grinding and etching procedure. After surface treatment, each specimen was bonded with composite resin and the bond strength was measured and the surface texture was observed by scanning electromicroscope(SEM). The results were as follows : 1. There was significant difference in shear bond strength between metal specimen and prorcelain specimen. 2. Bood strength of metal specimens treated with diamond bur was higher than that treated with $50{\mu}m$ aluminum oxide sandblasting. 3. Bond strength of porcelain specimen treated with diamond bur was higher than that treated with $50{\mu}m$ aluminum oxide sandblasting and porcelain etching agent. 4. There was no significant difference in shear bond strength between the group treated with diamond bur and combined treatment groups respectively. 5. The large undercuts were observed in group treated with diamond bur by SEM.

  • PDF

Improvement of Flexural Capacity of Reinforced Concrete Beams Retrofitted by CFS (CFS로 보강된 철근콘크리트 보의 휨내력향상효과에 관한 연구)

  • Lee, Yong Taeg;Lee, Li Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.203-211
    • /
    • 1999
  • This study is to examine the feasibility of carbon fiber sheet(CFS), a kind of fiber reinforced plastic(FRP), for a repair and reinforcement of R/C beams. The flexural strength of R/C beams, that were preloaded and then the cracks were repaired, maintains that of the uncracked R/C beams. The flexural strength of R/C beams increases with the reinforcement of CFS. In order to practically apply the repair and reinforcement method, further research is needed for the distribution, amount, and bond of CFS. In this study, an experiment was conducted for R/C beams reinforced with CFS, for various wrapping method and amounts of CFS. Experimental results showed the wrapping method increasing the bond area and amount of CFS layer caused the increase in the strength of the beams. It is found that the strength of CFS should be used as 70% of the maximum strength in retrofitting reinforced concrete beams in evaluating flexural capacity on the basis of ultimate strength design method.

  • PDF

Push-out bond strength and marginal adaptation of apical plugs with bioactive endodontic cements in simulated immature teeth

  • Maria Aparecida Barbosa de Sa;Eduardo Nunes ;Alberto Nogueira da Gama Antunes ;Manoel Brito Junior ;Martinho Campolina Rebello Horta ;Rodrigo Rodrigues Amaral;Stephen Cohen ;Frank Ferreira Silveira
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.53.1-53.11
    • /
    • 2021
  • Objectives: This study evaluates the bond strength and marginal adaptation of mineral trioxide aggregate (MTA) Repair HP and Biodentine used as apical plugs; MTA was used as reference material for comparison. Materials and Methods: A total of 30 single-rooted teeth with standardized, artificially created open apices were randomly divided into 3 groups (n = 10 per group), according to the material used to form 6-mm-thick apical plugs: group 1 (MTA Repair HP); group 2 (Biodentine); and group 3 (white MTA). Subsequently, the specimens were transversely sectioned to obtain 2 (cervical and apical) 2.5-mm-thick slices per root. Epoxy resin replicas were observed under a scanning electron microscope to measure the gap size at the material/dentin interface (the largest and smaller gaps were recorded for each replica). The bond strength of the investigated materials to dentin was determined using the push-out test. The variable bond strengths and gap sizes were evaluated independently at the apical and cervical root dentin slices. Data were analyzed using descriptive and analytic statistics. Results: The comparison between the groups regarding the variables' bond strengths and gap sizes showed no statistical difference (p > 0.05) except for a single difference in the smallest gap at the cervical root dentin slice, which was higher in group 3 than in group 1 (p < 0.05). Conclusions: The bond strength and marginal adaptation to root canal walls of MTA HP and Biodentine cement were comparable to white MTA.

Proposal of Bond Strength Evaluation Method for Bridge Deck Overlay (교면 덧씌우기 콘크리트의 부착강도 평가 방법 제안)

  • 장흥균;홍창우;정원경;이봉학;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.349-354
    • /
    • 2002
  • Significant improvements in bond strength between new and existing concrete can be achieved through the modification of the new concrete by latex modification. But, no test method has been adopted as a standard to measure the bond strength between the concrete used to repair and the substrate being repaired. The performance of old and the new concrete construction depends upon bond strength between old and the new concrete. Current adhesion strength measurement method ignores the effect of stress concentration by shape of specimens. Therefore, this research calculates stress concentration coefficient using finite element analysis and direction tensile strength test (pull-off test). The result shows that the required core depth is 2.5cm. Elastic modulus and overlay thickness do not influence in stress concentration.

  • PDF

Bond Strength and Durability of Spray Mortar Purposed for Repair (유지보수용 스프레이 모르타르의 부착강도 및 내구성)

  • Yun, Kyong-Ku;Kim, Seong-Kwon;Lee, Wan-Sung
    • Journal of Industrial Technology
    • /
    • v.33 no.A
    • /
    • pp.101-107
    • /
    • 2013
  • The purpose of this study was to investigate bond strength between substrate and HES-LMS mortar, durability of HES-LMS mortar with latex content(0%, 5%, 10%). To measure the bond strength, the direct tensile test based on uniaxial tensile test was used, which was proposed by Kuhlman(1990). Also, Resistance for water permeability, water absorption and image analysis for air void system were conducted to estimating durability of HES-LMS mortar.

  • PDF

The push-out bond strength of BIOfactor mineral trioxide aggregate, a novel root repair material

  • Akbulut, Makbule Bilge;Bozkurt, Durmus Alperen;Terlemez, Arslan;Akman, Melek
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.1
    • /
    • pp.5.1-5.9
    • /
    • 2019
  • Objectives: The aim of this in vitro study was to evaluate the push-out bond strength of a novel calcium silicate-based root repair material-BIOfactor MTA to root canal dentin in comparison with white MTA-Angelus (Angelus) and Biodentine (Septodont). Materials and Methods: The coronal parts of 12 central incisors were removed and the roots were embedded in acrylic resin blocks. Midroot dentin of each sample was horizontally sectioned into 1.1 mm slices and 3 slices were obtained from each root. Three canal-like standardized holes having 1 mm in diameter were created parallel to the root canal on each dentin slice with a diamond bur. The holes were filled with MTA-Angelus, Biodentine, or BIOfactor MTA. Wet gauze was placed over the specimens and samples were stored in an incubator at $37^{\circ}C$ for 7 days to allow complete setting. Then samples were subjected to the push-out test method using a universal test machine with the loading speed of 1 mm/min. Data was statistically analyzed using Friedman test and post hoc Wilcoxon signed rank test with Bonferroni correction. Results: There were no significant differences among the push-out bond strength values of MTA-Angelus, Biodentine, and BIOfactor MTA (p > 0.017). Most of the specimens exhibited cohesive failure in all groups, with the highest rate found in Biodentine group. Conclusions: Based on the results of this study, MTA-Angelus, Biodentine, and BIOfactor MTA showed similar resistances to the push-out testing.

SHEAR BOND STRENGTH OF REPAIRED COMPOSITE RESIN RESTORATIONS (수리된 복합레진 수복물의 전단결합강도 연구)

  • Choi, Soo-young;Jeong, Sun-Wa;Hwang, Yun-Chan;Kim, Sun-Ho;Yun, Chang;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.6
    • /
    • pp.569-576
    • /
    • 2002
  • This study was peformed to evaluate the interfacial shear bond strength of base (direct and indirect) and repair composites with aging and surface treatment methods. Direct composite resin specimens ($Charisma^{\circledR}$, Heraeus Kulzer, Germany) were aged for 5 min, 1 hour, 24 hours, and 1 week in $37^{\circ}C$ distilled water before surface treatment, and then divided into five groups Group 1, grinding; Group 2, grinding and application of bonding agent, Group 3, grinding, etching with 37% phosphoric acid for 30sec, and application of bonding agent, Group 4, grinding, etching with 37% phosphoric acid for 30sec, silane treatment, and application of bonding agent ; Group 5, grinding, etching with 4% hydrofluoric acid for 30sec. silane treatment, and application of bonding agent. Indirect composite resin specimens ($Artglass^{\circledR}$, Heraeus Kulzer, Germany) were aged for 1 week in $37^{\circ}C$ distilled water and divided into seven groups Group 1 - Group 5, equal to Charisma specimens; Group 6, grinding, etching with 37% phosphoric acid for 60sec, silane treatment, and application of bonding agent; Group7, grinding, etching with 4% hydrofluoric acid for 60 sec, silane treatment, and application of bond-ing agent. The repair material($Charisma^{\circledR}$) was then added on the center of the surface (5 mm in diameter. 5 mm in height). The shear bond strength was tested and the data was analyzed using one-way ANOVA and the Student- Newman-Keuls test. The following conclusions were drawn. 1 The shear bond strength of $Charisma^{\circledR}$ specimens aged for 1 hour was significantly higher in Group 2 and Group 5 than in Group 1 (p<0.05), and that of $Charisma^{\circledR}$ specimens aged for 1 week was signifi-cantly higher in Group 3 and Group 5 than in Group 1 (p<0.05). No significant difference was found in the bond strength of specimens aged for 5 min and 24 hours. 2. In Group 2 of the $Charisma^{\circledR}$ specimens, there was significant difference between the bond strength of 24 hours and that of 1 week (p<0.05). 3. In Group 4 of the $Charisma^{\circledR}$ specimens, the shear bond strength of specimens aged for 24 hours was significantly higher than the others(p<0.05) 4. There was no significant difference between the shear bond strength of the $Artglass^{\circledR}$ specimens, 5. Most of the $Charisma^{\circledR}$ specimens showed cohesive fractures. Artglass^{\circledR}$ specimens that were etched with acid (phosphoric or hydrofluoric) for 30 sec showed more cohesive fractures.