• Title/Summary/Keyword: Repair Cycle Time

Search Result 99, Processing Time 0.023 seconds

Two PM policies following the expiration of free-repair warranty (무료수리보증이 종료된 이후의 두 예방보전정책)

  • Jung, Ki-Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.999-1007
    • /
    • 2009
  • This paper considers the optimal periodic preventive maintenance (PM) policy following the expiration of free-repair warranty. We assume that two periodic PM models with random maintenance quality which were proposed by Wu and Clements-Croome (2005) and Jung (2006b), respectively. Given the cost structure to the user during the cycle of the product, we derive the expressions for the expected cost rate per unit time. Also, we obtain the optimal PM number and the optimal PM period by minimizing the expected cost rate per unit time. The numerical examples are presented for illustrative purpose.

  • PDF

Preventive maintenance model following the expiration of NFRRW (비재생무료교체-수리보증이 종료된 이후의 예방보전모형)

  • Jung, Ki-Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.4
    • /
    • pp.775-784
    • /
    • 2011
  • In this paper, we consider the periodic preventive maintenance model for repairable system following the expiration of non-renewing free replacement-repair warranty (NFRRW). Under this preventive maintenance model, we derive the expressions for the expected cycle length, the expected total cost and the expected cost rate per unit time. Also, we determine the optimal preventive maintenance period and the optimal preventive maintenance number by minimizing the expected cost rate per unit time. Finally, the optimal periodic preventive maintenance policy is given for Weibull distribution case.

Optimal replacement policy after extended warranty for a system with minimal repair warranty (최소수리 보증을 갖는 시스템에 대한 연장된 보증 이후의 최적의 교체정책)

  • Jung, Ki Mun
    • Journal of Applied Reliability
    • /
    • v.13 no.2
    • /
    • pp.77-86
    • /
    • 2013
  • Recently, an extended warranty of a system following the expiration of the basic warranty is becoming increasingly popular to the user. In this respect, we suggest a replacement model following the expiration of extended warranty with minimal repair warranty from the user's point of view in this paper. Under extended warranty, the failed system is minimally repaired by the manufacturer at no cost to the user during the original extended warranty period. As a criterion of the optimality, we utilize the expected cost rate per unit time during the life cycle from the user's perspective and suggest the optimal replacement period after extended warranty. Finally, a few numerical examples are given for illustrative purpose.

Minimum Expected Life Cycle Cost Model for Optimal Seismic Design and Upgrading of Long Span PC Bridges (장대 PC교량의 최적 내진설계 및 성능개선을 위한 최소 기대 Life Cycle Cost 모델)

  • 조효남;임종권
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.305-312
    • /
    • 1999
  • This study is intended to propose a systematic and practical life cycle cost(LCC) model for the development of the reliability-based seismic safety and cost-effective performance criteria for design and upgrading of long-span PC bridges. The LCC models consist of five cost functions such as initial cost, repair/replacement cost, human losses, road user cost, and indirect losses of regional economy. The proposed model Is successfully expressed in temrs of Park-Ang damage indices and life cycle damage probability obtained from SMART-DRAIN-2DX which is an existing algorithm for nonlinear time history analysis. The proposed LCC model is successfully applied to a viaduct constructed by PSM, in Seoul. Based on the observations, the proposed systematic procedure for the formulation of LCC model may be useful for the development of the reliability-based seismic safety and cost-effective performance criteria for design and upgrading of long-span PC bridges.

  • PDF

A Study on the Calculation Process of Carbon Dioxide Emission for Buildings with Life Cycle Assessment (건축물 생애과정에서의 이산화탄소 배출량 계산 프로세스에 관한 연구)

  • Jeong, Young-Sun;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.23-30
    • /
    • 2011
  • International cooperation to reduce greenhouse gas emissions is expected to provide a big crisis and a great opportunity at the same time for our industry that heavily consumes energy. To cope actively with the international environmental regulation, such as the Framework Convention on Climate Change, quantitative measurement of the volume of greenhouse gases emitted by various industries and quantitative prediction of the greenhouse gas emissions of the future are becoming more important than anything else at the national level. This study aims to propose the calculation process of carbon dioxide($CO_2$) emission for building in life cycle. This paper describes and compares 9 different tool for environmental load estimation with LCA. This study proposed the calculation process for quantitatively predicting and assessing $CO_2$ emissions during the life cycle of buildings based on the life cycle assessment(LCA). The life cycle steps of buildings were divided into the design/supervision, new construction, repair, renovation, use of operating energy in buildings, maintenance, and reconstruction stage in the life cycle inventory analysis and the method of assessing the environmental load in each stage was proposed.

RELIABILITY-BASED COMPONENT DETERIORATION MODEL FOR BRIDGE LIFE-CYCLE COST ANALYSIS

  • Rong-yau Huang;Wen-zheng Hsu
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.386-397
    • /
    • 2007
  • One major development in bridge life cycle cost analysis (LCCA) in recent years is to develop deterioration model for bridge components so that the times of repair/replacement throughout a component's life span can be properly determined. Taiwan also developed her own bridge LCCA model in 2003, integrating with the bridge inspection database in the local bridge management system (T-BMS). Under the framework of the local LCCA model, this study employs the reliability method in developing a deterioration model of bridge components. A component deteriorates through time in its reliability, which represents the probability of a component's condition index exceeds a user specified threshold. Model assumptions and rationale are described in the paper. The steps for applying the developed model are explained in detail. Results and findings are reported.

  • PDF

Prevention of UV-induced Skin Damage by Activation of Tumor Suppressor Genes p53 and $p14^{ARF}$

  • Petersen, R.;John, S.;Lueder, M.;Borchert, S.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.338-351
    • /
    • 2003
  • UV radiation is the most dangerous stress factor among permanent environmental impacts on human skin. Consequences of UV exposure are aberrant tissue architecture, alterations in skin cells including functional changes. Nowadays new kinds of outdoor leisure-time activities and changing environmental conditions make the question of sun protection more important than ever. It is necessary to recognize that self-confident consumers do not consider to change their way of life, they demand modern solutions on the basis of new scientific developments. In the past one fundamental principle of cosmetics was the use of physical and organic filter systems against damaging UV-rays. Today new research results demonstrate that natural protecting cell mechanisms can be activated. Suitable biological actives strongly support the protection function not from the surface but from the inside of the cell. A soy seed preparation (SSP) was proven to stimulate natural skin protective functions. The major functions are an increased energy level and the prevention of DNA damage. These functions can I be defined as biological UV protection. The tumor suppressor protein p53 plays a key role in the regulation of DNA repair. p53 must be transferred into the phosphorylated form to work as transcription factor for genes which are regulating the cell cycle or organizing DNA repair. A pretreatment with SSP increases the phosphorylation rate of p53 of chronically UV-irradiated human keratinocytes significantly. According to the same test procedure SSP induces a dramatic increase in the expression of the tumor suppressor protein p14$^{ARF}$ that is supporting the p53 activity by blocking the antagonist of p53, the oncoprotein Mdm2. Mdm2, a ubiquitin E3-ligase, downregulates p53 and at the same time it prevents phosphorylation of p53. The positive influence of the tumor suppressor proteins explains the stimulation of DNA repair and prevention of sunburn cell formation by SSP, which was proven in cell culture experiments. In vivo the increased skin tolerance against UV irradiation by SSP could be confirmed too. We have assumed, that an increased repair potential provides full cell functionality.y.

  • PDF

Optimal Design of Bridge Substructure Considering Uncertainty (불확실성을 고려한 교량 하부구조 최적설계)

  • Pack, Jang-Ho;Shin, Young-Seok;Shin, Wook-Bum;Lee, Jae-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.387-390
    • /
    • 2008
  • The importance of the life cycle cost analysis for construction projects of bridge has been recognized over the last decades. Accordingly, theoretical models, guidelines, and supporting softwares have been developed for the life cycle cost analysis of bridges. However, it is difficult to predict life cycle cost considering uncertainties precisely. This paper presents methodology for optimal design of substructure for a steel box bridge. Total life cycle cost for the service life is calculated as sum of initial cost, damage cost considering uncertainty, maintenance cost, repair and rehabilitation cost. The optimization method is applied to design of a bridge substructure with minimal cost, in which the objective function is set to life cycle cost and constraints are formulated on the basis of Korean Bridge Design Specification. Initial cost is calculated based on standard costs of the Korea Construction Price Index and damage cost on the damage probabilities to consider the uncertainty of load and resistance. An advanced first-order second moment method is used as a practical tool for reliability analysis using damage probability. Maintenance cost and cycle is determined by a stochastic method and user cost includes traffic operation costs and time delay costs.

  • PDF

A Study on the Improvement of RAM for Weapon System (무기체계 RAM 향상방안 연구)

  • 허동구;최석철
    • Journal of the military operations research society of Korea
    • /
    • v.27 no.1
    • /
    • pp.58-72
    • /
    • 2001
  • This research deals with the weapon system RAM which is the reliability, availability and maintainability for weapon systems. This weapon system RAM is one of very important factors because it is related to the life cycle cost and combat readiness of weapon systems. Therefore, in this research we introduce the weapon system RAM and analyze the problems of weapon system RAM management during system life cycle including acquisition period. Finally we suggest an alternative to improve the weapon system RAM in various agencies which are the department of defense and army headquarter level, etc., in the process of defense acquisition.

  • PDF

Polo-like kinase-1 in DNA damage response

  • Hyun, Sun-Yi;Hwan, Hyo-In;Jang, Young-Joo
    • BMB Reports
    • /
    • v.47 no.5
    • /
    • pp.249-255
    • /
    • 2014
  • Polo-like kinase-1 (Plk1) belongs to a family of serine-threonine kinases and plays a critical role in mitotic progression. Plk1 involves in the initiation of mitosis, centrosome maturation, bipolar spindle formation, and cytokinesis, well-reported as traditional functions of Plk1. In this review, we discuss the role of Plk1 during DNA damage response beyond the functions in mitotsis. When DNA is damaged in cells under various stress conditions, the checkpoint mechanism is activated to allow cells to have enough time for repair. When damage is repaired, cells progress continuously their division, which is called checkpoint recovery. If damage is too severe to repair, cells undergo apoptotic pathway. If damage is not completely repaired, cells undergo a process called checkpoint adaptation, and resume cell division cycle with damaged DNA. Plk1 targets and regulates many key factors in the process of damage response, and we deal with these subjects in this review.