• 제목/요약/키워드: Renewable resources

검색결과 756건 처리시간 0.025초

에너지 효율분석을 통한 DC 마이크로그리드의 타당성 검토 (A Feasibility Study on DC Microgrids Considering Energy Efficiency)

  • 유철희;정일엽;홍성수;채우규;김주용
    • 전기학회논문지
    • /
    • 제60권9호
    • /
    • pp.1674-1683
    • /
    • 2011
  • More than 80% of electric loads need DC electricity rather than AC at the moment. If DC power could be supplied directly to the terminal loads, power conversion stages including rectifiers, converters, and power adapters can be reduced or simplified. Therefore, DC microgrids may be able to improve energy efficiency of power distribution systems. In addition, DC microgrids can increase the penetration level of renewable energy resources because many renewable energy resources such as solar photovoltaic(PV) generators, fuel cells, and batteries generate electric power in the form of DC power. The integration of the DC generators to AC electric power systems requires the power conversion circuits that may cause additional energy loss. This paper discusses the capability and feasibility of DC microgrids with regard to energy efficiency analysis through detailed dynamic simulation of DC and AC microgrids. The dynamic simulation models of DC and AC microgrids based on the Microgrid Test System in KEPCO Research Institute are described in detail. Through simulation studies on various conditions, this paper compares the energy efficiency and advantages of DC and AC microgrids.

온실 빗물 저수조의 용량산정 방법 (Volume Estimation Method for Greenhouse Rainwater Tank)

  • 서찬주;구자공
    • 유기물자원화
    • /
    • 제24권2호
    • /
    • pp.31-39
    • /
    • 2016
  • 저수조는 유입/유출량의 시간적인 편차 때문에 필요하다. 저수조 용량 산정하기 위해서 공급(예, 강수) 누적 량과 요구(예, 관수) 누적 량의 차이를 사용한다. (-)와 (+)영역의 상관없이 누적 량 차의 절댓값 최대치가 되었을 때 용량의 산정이 이루어진다. 본 논문에서는, 온실 시설물의 강수와 관수를 이용하여 비선형적인 공급이나 요구량에서도 이를 적용하여 용량을 산정하였고, 비선형적인 변화가 커졌을 시에도 적용 할 수 있음을 증명하였다. 그리고 모니터링에 대한 시간 간격이 작아짐에 따라서, 저수조 용량이 증가되며, 강수량의 경우에는 약 10일을 변곡점으로 증가폭이 감소됨을 보인다.

Policy implications for up-scaling of off-grid solar PV for increasing access to electricity in rural areas of Nepal: Best practices and lessons learned

  • Sapkota, Surya Kumar
    • 한국태양광발전학회지
    • /
    • 제6권1호
    • /
    • pp.8-20
    • /
    • 2020
  • Nepal has huge potential of hydro and other renewable energy resources including solar energy. However, only 70% of the total population have access to electricity despite the long history of hydropower development in the country. Still more than 37% population in rural areas and around 73% population in Karnali Province, one of the least developed provinces, are living without access to electricity despite taking several initiatives and implementing various policies by government supporting electrification in off-grid rural areas. Government together with donors and private sector has extensively been promoting the off-grid solar photovoltaic (PV) echnology in un-electrified areas to increase electricity access. So far, more than 900,000 households in rural areas of Nepal are getting electricity from stand-alone solar PV systems. However, there are many challenges including financial, technical, institutional, and governance barriers in Nepal. This study based on extensive review of literatures and author's own long working experiences in renewable energy sector in Nepal, shares the best practices and lessons of off-grid solar PV for increasing access to electricity in rural areas of Nepal. This study suggests that flexible financial instruments, financial innovations, bundling of PV systems for concentrating energy loads, adopting standards process, local capacity building, and combination of technology, financing and institutional aspects are a key for enhancing effectiveness of solar PV technology in rural areas of Nepal.

제주계통 단독운전 시 주파수 안정도 유지를 위한 풍력발전 운전용량 산정 방법에 관한 연구 (A Study on the Assessment of Operational Capacity Limit of Wind Turbine for the Frequency Stability of Jeiu Island System)

  • 황교익;전영환
    • 전기학회논문지
    • /
    • 제56권2호
    • /
    • pp.233-239
    • /
    • 2007
  • As the Kyoto Protocol, which aims at reducing greenhouse gases in accordance to the UNFCCC, came into force, research on environment friendly energy resources has been a matter of concern worldwide. As a general power generation system, among renewable energy resources, that is interconnected and operated with power system, the wind turbine is emerging as an effective alternative. Since power capacity of the wind turbine has been steadily increasing and its relative importance is also increasing in total facility capacity, we cannot ignore its effect. Because controlling generation output in the wind turbine is not as easy as in the synchronous machine due to its facility characteristics and it generates irregular output fluctuations when interconnected with power system, system interconnection was difficult. But the effect of large capacity wind turbine on isolated power system like Jeju island is serious problem on the frequency stability. Accordingly, it is necessary to analyze the effects of wind turbine on system interconnection and assess the optimum capacity of wind turbine that satisfies the most important principle of stable power supply. This paper have analyzed the effects of wind turbine capacity increases on the system and suggested the method of the capacity to achieve its steady operation. And It is applied to the Jeju island.

중형 소각로 다이옥신 배출 저감을 위한 최적 운전인자 (Optimal Operation of Medium Sized Incinerator to Minimize PCDD/Fs Emission)

  • 유동준;구자공;정승익
    • 유기물자원화
    • /
    • 제21권4호
    • /
    • pp.44-49
    • /
    • 2013
  • 한국의 중형 소각시설이 전체 소각로 개수의 약 90% 차지하는 실정에서 중형 소각시설의 다이옥신 저감운전기술을 확립하는 것은 매우 시급하다. 생활폐기물과 성상이 유사한 사업장 일반폐기물을 일 20톤 처리용량의 중형규모 구동화격자 스토커 소각시설에서 운전하면서, 각 공정별로 다이옥신 저감을 위한 최적 운전 인자를 도출하였다. CO튀는 현상의 최소가 다이옥신 배출저감에 운전최선책임이 밝혀졌다.

Mesh구조의 상대전극을 갖는 염료감응형태양전지의 특성연구 (A study on the characteristic of Dye-sensitized solar cell with mesh structure of counter electrode)

  • 장진주;서현웅;손민규;이경준;홍지태;김희제
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.131-133
    • /
    • 2008
  • A serious problem of the 21st century is the supply of energy resources. Reserves of fossil fuels are facing depletion: renewable energy resources must be developed in this era. Dye sensitized solar cell (DSC) has been very economical and easy method to convert solar energy to electricity. Recently a novel tandem cell structure is proposed to improve photocurrent of DSC. To fabricated a tandem cell, the mesh structure of counter electrode is essential for the improvement in transmittance. In this study, we conducted the experiment to get the characteristic of DSC with mesh counter electrode. Under the standard test condition (AM 1.5, 100mW/$cm^2$), we obtained the maximum efficiency of 3.41% and the transmittance of 72% in the DSC with mesh counter electrode.

  • PDF

Simplified Limit Solutions for the Inclined Load Capacity of a Dynamically Installed Pile in Soft Clay

  • Lee, Junho;Jung, Jong-Suk;Sim, Young-Jong;Park, Yong-Boo
    • 토지주택연구
    • /
    • 제11권2호
    • /
    • pp.87-94
    • /
    • 2020
  • Offshore renewable energy resources are attractive alternatives in addressing the nation's clean energy policies because of the high demand for electricity in the coastal region. As a large portion of potential resources is in deep and farther water, economically competitive floating systems have been developed. Despite the advancement of floating technologies, the high capital cost remains a primary barrier to go ahead offshore renewable energy projects. The dynamically installed piles (DIPs) have been considered one of the most economical pile concepts due to their simple installation method, resulting in cost and time-saving. Nevertheless, applications to real fields are limited because of uncertainties and underestimated load capacity. Thus, this study suggests the appropriate analytical approach to estimate the inclined load capacity of the DIPs by using the upper bound plastic limit analysis (PLA) method. The validity of the PLA under several conditions is demonstrated through comparison to the finite element (FE) method. The PLA was performed to understand how flukes, soil profiles, and load inclinations can affect the inclined load capacity and to provide reliable evaluations of the total resistance of the DIPs. The studies show that PLA can be a useful framework for evaluating the inclined load capacity of the DIPs under undrained conditions.

The technological state of the art of wave energy converters

  • GURSEL, K. Turgut
    • Advances in Energy Research
    • /
    • 제6권2호
    • /
    • pp.103-129
    • /
    • 2019
  • While global demand for energy increases annually, at the same time the demand for carbon-free, sulphur-free and NOx-free energy sources grows considerably. This state poses a challenge in the research for newer sources like biomass and shale gas as well as renewable energy resources such as solar, wind, geothermal and hydraulic energy. Although wave energy also is a form of renewable energy it has not fully been exploited technically and economically so far. This study tries to explain those reasons in which it is beyond doubt that the demand for wave energy will soon increase as fossil energy resources are depleted and environmental concerns gain more importance. The electrical energy supplied to the grid shall be produced from wave energy whose conversion devices can basically work according to three different systems. i. Systems that exploit the motions or shape deformations of their mechanisms involved, being driven by the energy of passing waves. ii. Systems that exploit the weight of the seawater stored in a reservoir or the changes of water pressure by the oscillations of wave height, iii. Systems that convert the wave motions into air flow. One of the aims of this study is to present the classification deficits of the wave energy converters (WECs) of the "wave developers" prepared by the European Marine Energy Center, which were to be reclassified. Furthermore, a new classification of all WECs listed by the European Marine Energy Center was arranged independently. The other aim of the study is to assess the technological state of the art of these WECs designed and/or produced, to obtain an overview on them.

단기관측에 의한 월령 연안지역 풍력에너지 잠재량 평가 (Assessment of Wind Energy Potentiality in Wolryong using Short-term Observation)

  • 정태윤;임희창
    • 신재생에너지
    • /
    • 제5권4호
    • /
    • pp.11-18
    • /
    • 2009
  • Wind energy resources are recently considered as an important power generation alternative in the future. The fact that the investment of wind turbine installation continues to increase has motivated a need to develop more widely applicable methodologies for evaluating the actual benefits of adding wind turbines to conventional generating systems. This study is aiming to estimate the future wind resources with various estimation methods. The wind power is calculated at the hub height 75m of 800KW and 1,500KW wind turbines in Wolryong site, Jeju island, South Korea. Three equations - logarithmic, profile, and power law methods are applied for the accurate prediction of wind profile. In addition, yearly wind power can be calculated by using Weibull & Rayleigh distribution. It is found that predicted wind speed is highly affected by friction velocity, atmospheric stability, and averaged roughness length. It is concluded that Rayleigh distribution provides greater power generation than the Weibull distribution, especially for low wind-speed condition.

  • PDF

경소마그네시아 기반 폴리실리콘슬러지 치환율에 따른 경화체의 물리적 특성 (Physical Properties of Matrix According to Replacement Ratio using Polysilicon Sludge Based on Light Burned Magnesia)

  • 김용구;김대연;신진현;이상수;송하영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.143-144
    • /
    • 2019
  • Recently, environmental pollution related to global warming is on the rise. Meanwhile, renewable energy is a representative example of many efforts to develop eco-friendly energy to solve the depletion of natural resources and the depletion of petroleum resources in conjunction with global warming. Among them, photovoltaic power generation is increasing the subsidies for the government to increase the production of photovoltaic electricity of the general public, showing a high growth rate. However, polysilicon, which is a raw material of the photovoltaic panel, generates waste called polysilicon sludge in the manufacturing process. In order to produce 1 ton of polysilicon, about 2 tons of waste polysilicon sludge is generated. In 2012, polysilicon sludge was generated at 78,000 tons, with an average of about 220 tons per day. The sludge generated due to insufficient treatment of polysilicon sludge is currently solidified and is processed by landfilling. Therefore, in this study, polysilicone sludge is used as the concept of admixture, and the physical properties of the matrix according to the polysilicon sludge replacement ratio based on light burned magnesia is determined.

  • PDF