• Title/Summary/Keyword: Renewable material

Search Result 347, Processing Time 0.027 seconds

Recent Advances in Catalyst Materials for PEM Water Electrolysis

  • Paula Marielle Ababao;Ilwhan Oh
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.2
    • /
    • pp.19-34
    • /
    • 2023
  • Due to the intermittency of renewable energy sources, a need to store and transport energy will increase. Hydrogen production through water electrolysis will provide an excellent way to supplement the intermittency of renewable energy sources. While alkaline water electrolysis is currently the most mature technology, it has drawbacks of low current density, large footprint, gas crossover, etc. The PEM water electrolysis has potential to replace the alkaline electrolysis. However, expensive catalyst material used in the PEM electrolysis has been the bottleneck of widespread use. In this review, we have reviewed recent efforts to reduce catalyst loading in PEM water electrolysis. In core-shell nanostructures, the precious metal catalyst forms a shell while heteroatoms form a core. In this way, the catalyst loading can be significantly reduced while maintaining the catalytic activity. In another approach, a corrosion-resistant support is utilized, which provides a stable platform to impregnate precious metal catalyst.

From Renewable Electricity to Green Hydrogen: Production and Storage Challenges for a Clean Energy Future

  • Hidouri Dalila;Rym Marouani;Cherif Adnen
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.171-179
    • /
    • 2024
  • Decentralized energy production without greenhouse gas emissions from renewable energy sources despite their advantage and environmental impact suffers from the problem of intermittent and fluctuating supply depending on weather conditions. To overcome this problem, energy storage is essential to enable reliable and continuous supply of the load. Hydrogen is one of the most promising energy storage solutions because it is easily transportable and can be used as fuel or as a raw material for the production of other chemicals.In this article, we will focus on hydrogen energy storage techniques using photovoltaic systems. We will review the different types of hydrogen storage structuresfor several applications, including residential and commercial buildings, as well as industry and transportation (electric vehicles using PEFMC fuel cells).

Assesment of Renewable Energy (신재생 에너지 고찰)

  • Lee, Sang-Heon;Koo, Kyoung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2071-2072
    • /
    • 2011
  • Withstand voltage characteristics of the nanocomposites, as a material with excellent abrasion resistance and water resistance, low shrinkage upon curing with moisture even in very good adhesion, workability is not lost. In this study, the fusion of nanoparticles and the high functionality epoxy nano-composite material produces the electricity. Degeneration of the unit based on this power structure and breakdown characteristics, efficiency and cross-measurement system as closely related organisms that can be applied to the power plant electrical efficiency of the nano-composite material is designed to develop skills.

  • PDF

Feasibility study of the energy supply system for horticulture facility using dynamic energy simulation (동적 에너지 시뮬레이션을 이용한 시설원예용 에너지 공급시스템의 경제성 분석)

  • Yu, Min-Gyung;Cho, Jeong-Heum;Nam, Yujin
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.103-109
    • /
    • 2015
  • Recently, the usage of renewable energy system has been recommended because of the energy saving and depletion of fossil fuel. Especially, ground source heat pump system(GSHP) has a high efficiency by using annual stable ground temperature. Also, wood pellet is low cost and a high calorific value compared to fossil fuel. However, only small number of farms have applied renewable energy system to horticultural facility because of a high initial costs and uncertainty of its cost efficiency. In this study, in order to analyze the feasibility for the horticulture, TRNSYS simulation based on the standard horticultural facility was conducted in different weather and covering material conditions. Then, comparative feasibility analysis of each energy supplying system was conducted. As a result, we have found out that a high initial cost of renewable energy system was recovered by the economics of the energy cost. Due to the energy cost reduction, the payback periods were 10-11 years in the case of GSHP and 4-6 years in the case of wood pellet boiler.

Biogas Production and Utilization Technologies from Organic waste (유기성폐기물을 이용한 바이오가스 생산 및 활용기술)

  • Heo, Nam-Hyo;Lee, Seung-Heon;Kim, Byeong-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.202-205
    • /
    • 2008
  • Anaerobic digestion(AD) is the most promising method of treating and recycling of different organic wastes, such as OFMSW, household wastes, animal manure, agro-industrial wastes, industrial organic wastes and sewage sludge. During AD, i.e. degradation in the absence of oxygen, organic material is decomposed by anaerobes forming degestates such as an excellent fertilizer and biogas, a mixture of carbon dioxide and methane. AD has been one of the leading technologies that can make a large contribution to producing renewable energy and to reducing $CO_2$ and other GHG emission, it is becoming a key method for both waste treatment and recovery of a renewable fuel and other valuable co-products. A classification of the basic AD technologies for the production of biogas can be made according to the dry matter of biowaste and digestion temperature, which divide the AD process in wet and dry, mesophilic and thermophilic. The biogas produced from AD plant can be utilized as an alternative energy source, for lighting and cooking in case of small-scale, for CHP and vehicle fuel or fuel in industrials in case of large-scale. This paper provides an overview of the status of biogas production and utilization technologies.

  • PDF

Development Strategy of Clean Hydrogen Production by Renewable Energy-based Water Electrolysis in Korea (국내 재생에너지 연계 수전해 청정수소 생산 발전 전략: 국내외 관련 연구의 비교, 분석을 중심으로)

  • YOUNG YIEL CHOI;IN SUNG JUNG;TAE JIN KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.5
    • /
    • pp.389-397
    • /
    • 2023
  • This study compares domestic and foreign research on renewable energy-based water electrolysis clean hydrogen. Domestic studies from 2010 to 2023 focused on technological efficiency, energy efficiency, and system efficiency, with few analyzing infrastructure and technology trends. Overseas research initially focused on technological efficiency and stability, but has since shifted to economic and environmental impact, policy effectiveness, industry-university-research cooperation, and sustainability. To improve water electrolysis technology production, this study suggests prioritizing technology stability over efficiency, resolving government regulations and resident acceptance issues, promoting industry-university-institute cooperation for rapid commercialization of research results, and developing a strategy for sustainable development of renewable energy-based water electrolysis technology.

Luminescence Properties of Cd-Free InZnP/ZnSe/ZnS Core/Shell Quantum Dots (비카드뮴계 InZnP/ZnSe/ZnS 코어쉘 양자점의 발광 특성)

  • Lee, Young-Ki;Lee, Min-Sang;Lee, Jeong-Mi;Won, Dae-Hee;Kim, Jong-Man
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.454-460
    • /
    • 2021
  • In this work, we synthesized alloy-core InZnP quantum dots, which are more efficient than single-core InP quantum dots, using a solution process method. The effect of synthesis conditions of alloy core on optical properties was investigated. We also investigated the conditions that make up the gradient shell to minimize defects caused by lattice mismatch between the InZnP core and ZnS is 7.7%. The stable synthesis temperature of the InZnP alloy core was 200℃. Quantum dots consisting of three layered ZnSe gradient shell and single layered ZnS exhibited the best optical property. The properties of quantum dots synthesized in 100 ml and in 2,000 ml flasks were almost equal.

Electrical Output and Reliability of Photovoltaic Module Using Ethylene Tetrafluoroethylene Film (ETFE 필름을 적용한 태양광 모듈의 전기적 출력 및 신뢰성에 관한 연구)

  • Shin, Woogyun;Lim, Jongrok;Ko, Sukwhan;Kang, Gihwan;Ju, Youngchul;Hwang, Heymi
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.4
    • /
    • pp.13-22
    • /
    • 2020
  • As the supply of photovoltaic (PV) increases worldwide, the cumulative installations in 2018 were 7.9 and 560 GW in Korea and the world, respectively. Typically, when the ground on commercial PV modules is installed, the area is limited; hence, new designs of PV modules are required to install additional PVs. Among the new design of PV modules, lightweight PV modules can be utilized in PV systems, such as buildings, farmlands, and floating PV. Concerning the investigation of lightweight PV modules, several studies on materials for replacing low-iron tempered glass, which comprises approximately 65% of the PV module weight, have been conducted. However, materials that are used as substitutes for glass should possess similar lightweight properties and reliability as glass. In this study, experimental tests were performed to evaluate the applicability of ethylene tetrafluoroethylene (ETFE) film with excellent resistance to water and aging as a front material of PV modules. The transmittance and ultraviolet properties of the ETFE film were determined and compared with those of glass. A 1-cell module and laboratory-scale 24-cell module were manufactured using the ETFE film and glass, and the electrical output was measured and analyzed. Furthermore, damp heat and thermal cycle tests were conducted to evaluate the reliability of the ETFE film module. Based on the experimental results, the electrical output and reliability of the ETFE film module were similar to those of the glass module, and the ETFE film could be used as the front material of PV modules.

A Study on the Renewable energy generation (신 에너지 고찰)

  • Lee, Sang-Heon;Choi, Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.22-22
    • /
    • 2010
  • 협소한 지역, 고호율의 에너지 변환을 할 수 있는 MW급 Dish-Stirling 태양열발전 연구는 관련기술 개발뿐만 아니라 마이크로그리드 더 나아가서는 스마트그리드 사업의 안정적 유지에 도움을 준다. 태양열 발전 시스템은 태양열 발전기설계를 포함한 발전 송배전계통 연계의 원천기술확보와 함께 모니터링 등의 기술 분야에 있어서 상용화가 가능하다.

  • PDF