• Title/Summary/Keyword: Renewable energy system

Search Result 2,432, Processing Time 0.026 seconds

Analysis of New & Renewable Energy Application and Energy Consumption in Public Buildings (공공건축물의 신재생에너지 적용과 에너지 사용량 분석)

  • Lee, Yong-Ho;Seo, Sang-Hyun;Kim, Hyung-Jin;Cho, Young-Hum;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.153-161
    • /
    • 2012
  • This study conducted a survey and field investigation on the application of the Public Obligation System for new & renewable energy in public buildings, as well as energy consumption of each building according to their uses. The findings are as follows: (1) Since the introduction of the Public Obligation System (until June 30, 2011), there was average 1.4 new & renewable energy facilities established at 1,433 places. Preference for solar energy facilities was the highest at 57.8%. (2) The revised act sets the obligatory supply percentage of new & renewable energy for each public building: it is 9.0% for a tax office, 4.2% for a dong office, 8.2% for a public health center, and 12.6% for a fire station. All the public buildings except for fire stations failed to meet 10% expected energy consumption, a revised standard. (3) Energy consumption of each public building was 120.6TOE for a tax office, 124.3TOE for a dong office, 166.4TOE for a public health center, and 174.6TOE for a fire station. The energy consumption was comprised of 80% electric power, 18% urban gas, and 1% oil. (4) Electric power consumption per person in the room was high at a dong office, and fuel consumption per person in the room was high at a public health center. In addition, electric power consumption per unit space was high at a public health center, and fuel consumption per unit space was high at a fire station. (5) In all the four public buildings, power load had the highest basic unit percentage at average 55%, being followed by heating load (21.2%), cooling load (15%), and water heating load (7%). A tax office and fire station had 2% load due to cooking facilities.

Analysis of Power System Stability by Deployment of Renewable Energy Resources (재생에너지원 보급에 따른 전력계통 안정도 분석)

  • Kwak, Eun-Sup;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.633-642
    • /
    • 2021
  • Growing demand for electricity, when combined with the need to limit carbon emissions, drives a huge increase in renewable energy industry. In the electric power system, electricity supply always needs to be balanced with electricity demand and network losses to maintain safe, dependable, and stable system operation. There are three broad challenges when it comes to a power system with a high penetration of renewable energy: transient stability, small signal stability, and frequency stability. Transient stability analyze the system response to disturbances such as the loss of generation, line-switching operations, faults, and sudden load changes in the first several seconds following the disturbance. Small signal stability refers to the system's ability to maintain synchronization between generators and steady voltages when it is subjected to small perturbations such as incremental changes in system load. Frequency stability refers to the ability of a power system to maintain steady frequency following a severe system upset resulting in significant imbalance between generation and load. In this paper, we discusses these stability using system simulation by renewable energy deployment plan, and also analyses the influence of the renewable energy sources to the grid stability.

Dynamic Analysis and Controller Design for Standalone Operation of Photovoltaic Power Conditioners with Energy Storage

  • Park, Sun-Jae;Shin, Jong-Hyun;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2004-2012
    • /
    • 2014
  • Energy storage devices are necessary to obtain stable utilization of renewable energy sources. When black-out occurs, distributed renewable power sources with energy storage devices can operate under standalone mode as uninterruptable power supply. This paper proposes a dynamic response analysis with small-signal modeling for the standalone operation of a photovoltaic power generation system that includes a bidirectional charger/discharger with a battery. Furthermore, it proposes a DC-link voltage controller design of the entire power conditioning system, using the storage current under standalone operation. The purpose of this controller is to guarantee the stable operation of the renewable source and the storage subsystem, with the power conversion of a very efficient bypass-type PCS. This paper presents the operating principle and design guidelines of the proposed scheme, along with performance analysis and simulation. Finally, a hardware prototype of 1-kW power conditioning system with an energy storage device is implemented, for experimental verification of the proposed converter system.

A Study on Probabilistic Reliability Evaluation of Power System Considering Wind Turbine Generators (풍력발전기를 고려한 전력계통의 확률론적인 신뢰도 평가에 관한 연구)

  • Park, Jeong-Je;Wu, Liang;Choi, Jae-Seok;Moon, Seung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1491-1499
    • /
    • 2008
  • This paper presents a study on reliability evaluation of a power system considering wind turbine generators (WTG) with multi-state. Renewable energy resources such as wind, wave, solar, micro hydro, tidal and biomass etc. are becoming importance stage by stage because of considering effect of the environment. Wind energy is one of the most successful sources of renewable energy for the production of electrical energy. But, reliability evaluation of generating system with wind energy resources is a complex process. While the wind turbine generators can not modelled as two-state model as like as conventional generators, they should be modelled as multi-state model due to wind speed random variation. The methodology for obtaining reliability evaluation index of wind turbine generators is different from it of the conventional generators. A method for making outage capacity probability table of WTG for reliability is proposed in this paper. The detail process is presented using case study of simple system.

Real-time Optimal Operation Planning of Isolated Microgrid Considering SOC balance of ESS

  • Lee, Yoon Cheol;Shim, Ji Yeon;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.10
    • /
    • pp.57-63
    • /
    • 2018
  • The operating system for an isolated microgrid, which is completely disconnected from the central power system, aims at preventing blackouts and minimizing power generation costs of diesel generators through efficient operation of the energy storage system (ESS) that stores energy produced by renewable energy generators and diesel generators. In this paper, we predict the amount of renewable energy generation using the weather forecast and build an optimal diesel power generation plan using a genetic algorithm. In order to avoid inefficiency due to inaccurate prediction of renewable energy generation, our search algorithm imposes penalty on candidate diesel power generation plans that fail to maintain the SOC (state of charge) of ESS at an appropriate level. Simulation experiments show that our optimization method for maintaining an appropriate SOC balance can prevent the blackout better when compared with the previous method.

Study on Analysis of Suitable Site for Development of Floating Photovoltaic System (수상태양광 발전시스템 개발을 위한 적지조사에 관한 연구)

  • Lee, Sung-Hun;Lee, Nam-Hyung;Choi, Hyeong-Cheol;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.30-38
    • /
    • 2012
  • Recently, interests in renewable energy have gradually increased. Photovoltaic system of various renewable energy is the most interest in power sources. Nowadays, the market of photovoltaic system is expected to be expanded due to the introduction of RPS(Renewable Portfolio Standard). Floating photovoltaic system is a new power system using the water surface above the dam and reservoir water. Floating photovoltaic system is different from the traditional approach to the development of solar power system causing problems such as environmental degradation. This paper investigates the analysis methods of suitable site for the development of floating photovoltaic system. The A,B,C as the optimal candidates were selected in hap cheon dam. The C is the best suitable site in A,B,C considering the expected power generation. Applied methods have effectively done to develop floated photovoltaic system.

ECONOMIC ASSESSMENT OF THE SOLAR-ENERGY SYSTEM USING LIFE CYCLE COST ANALYSIS

  • Chang-Yoon Ji;Dong-Won Jang;Taehoon Hong;Chang-Taek Hyun
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.669-675
    • /
    • 2009
  • As the use of new and renewable energy is one of the ways by which the exhaustion of fossil fuels and the other existing environmental problems can be addressed, a policy of spreading information regarding it and of conducting R&D related to it is currently being implemented in advanced countries. In the construction field, the concept of "green building" was born, and the application of this concept has increased, with the end in view of achieving energy savings, resource savings, and recycling, and of conserving the natural environment. In this context, the government of Korea amended the "Law on the Development, Use, and Promotion of New and Recycled Energy" in 2004, which contains 11 provisions related to new and renewable energy and their sources, including solar and geothermal energy as well as sunlight, water, rainfall, and organisms. Since solar-energy should be used instead of fossil fuels by converting sunlight directly into electricity, many researches on this subject are in progress. There are few researches, however, employing the economic approach to the subject. Thus, in this study, an economic assessment of the solar-energy system was conducted using both life cycle cost (LCC) analysis and sensitivity analysis. The results of the LCC analysis show that the solar-energy system will become economically better than the fossil fuel system after 16 years, although the initial construction cost of the solar-energy system is higher than that of the fossil fuel system. The results of this study are expected to be used in selecting an eco-friendly and economical solar-energy system when the construction of a green building is planned.

  • PDF

A Simple Ensemble Prediction System for Wind Power Forecasting - Evaluation by Typhoon Bolaven Case - (풍력예보를 위한 단순 앙상블예측시스템 - 태풍 볼라벤 사례를 통한 평가 -)

  • Kim, Jin-Young;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol;Kim, Ji-Young;Lee, Jun-Shin
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.27-37
    • /
    • 2016
  • A simple but practical Ensemble Prediction System(EPS) for wind power forecasting was developed and evaluated using the measurement of the offshore meteorological tower, HeMOSU-1(Herald of Meteorological and Oceanographic Special Unite-1) installed at the Southwest Offshore in South Korea. The EPS developed by the Korea Institute of Energy Research is based on a simple ensemble mean of two Numerical Weather Prediction(NWP) models, WRF-NMM and WRF-ARW. In addition, the Kalman Filter is applied for real-time quality improvement of wind ensembles. All forecasts with EPS were analyzed in comparison with the HeMOSU-1 measurements at 97 m above sea level during Typhoon Bolaven episode in August 2012. The results indicate that EPS was in the best agreement with the in-situ measurement regarding (peak) wind speed and cut-out speed incidence. The RMSE of wind speed was 1.44 m/s while the incidence time lag of cut-out wind speed was 0 hour, which means that the EPS properly predicted a development and its movement. The duration of cut-out wind speed period by the EPS was also acceptable. This study is anticipated to provide a useful quantitative guide and information for a large-scale offshore wind farm operation in the decision making of wind turbine control especially during a typhoon episode.

Computer Simulation of Lower Farmland by the Composition of an Agrophotovoltaic System (영농형 태양광 발전 시스템 구성에 따른 하부 농지 일사량의 전산모사 연구)

  • Kim, DeokSung;Kim, ChangHeon;Park, JongSung;Kim, ChangHan;Nam, JaeWoo;Cho, JaiYoung;Lim, CheolHyun
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.41-46
    • /
    • 2020
  • The share of agrophotovoltaics in the "renewable energy 3020", which is the Korean government policy for revitalizing new and renewable energy, is increasing gradually. In this study, the distribution of solar radiation received by crops growing on virtual farmland under a range of conditions, such as module height, module angle, shading ratio, and module type, was quantified and analyzed using an Ecotect program, which allows insolation analysis during the period from spring to fall. As the module angle increases, transmissive modules increase the amount of solar radiation delivered to the lower farmland. In addition, the difference between 3x12 Cell Type and 4x9 Cells Type, which are types of photovoltaic modules used in practice, was found to be small. The analysis results can be used as a design standard for the future establishment of agrophotovoltaic systems.

The Development of GIS-based Small Hydropower Package Tool (GIS기반 소수력 Package Tool 개발)

  • Heo, June-Ho;Jeong, Sang-Man;Park, Wan-Soon;Lee, Chul-Hyung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.139-144
    • /
    • 2009
  • The generation of small hydropower as compared to other different developed environmental methods produces one of the clean energies. In such manner, various application system development through IT technique is being developed for an advanced small hydropower energy resources data mining. However, existing data analysis of New & Renewable Information System for small hydropower resources application is incomplete therefore it limits expressing these information on the Web. Thus for positive usage of small hydropower resources, a more systematic and precise analysis system should be built. This study seeks to develop a map of the domestic small hydropower resources problems to further improve small hydropower resources, developed through Package Tool which can accurately evaluate a wide range of small hydropower basin in a short period of time. Small hydropower Package Tool was calculated using existing Analysis System small hydropower resources which did not provide diverse capabilities resulting to 840 standard basin classified by A and facility capacity, etc., and to assume a 40% annual capacity, expected annual electricity production was calculated. Small hydropower for the national water system of small hydropower resources potential calculated in terms of resources for the development of small hydropower will be utilized as basic data.

  • PDF