• Title/Summary/Keyword: Renewable energy generator

Search Result 347, Processing Time 0.022 seconds

Operation Characteristics of Gas Engine Generator System using Coal Syngas (석탄 합성가스를 사용한 가스엔진 발전시스템 운전 특성)

  • Chung, Seok-Woo;Kim, Mun-Hyun;Lee, Seung-Jong;Yun, Yong-Seung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.800-803
    • /
    • 2007
  • Gasification has been regarded as a core technology in dealing with environmental pollutants and in obtaining higher efficiency for power generation. Among several ways in utilizing produced syngas from gasification, power generation would be the most prominent application. Syngas from coal was applied to the readily available LPG engine from automobiles. Main purpose was to identify the combustion characteristics in the modified gas engine when using syngas of low heating value and to test the modification optionsin the LPG gas engine. Gas engine rpm and the corresponding flue gas composition were measured for each syngas input condition. Results showed that even with syngas at the heating value of $1300{\sim}1800$ kcal/$Nm^3$ corresponding to the $6{\sim}7%$ of LPG heating value, gas engine operated successfully only with the problems of high CO and oxygen concentrations in the flue gas.

  • PDF

Evaluation of IGCC Plant with Load Factor of Plant (플랜트 부하률에 따른 IGCC 플랜트 복합발전시스템 평가)

  • Jung, Su-Yong;Shim, Hyun-Min;Wang, Hong-Yue;Kim, Hyung-Taek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.816-819
    • /
    • 2007
  • 국내에서 IGCC 플랜트의 복합발전시스템의 평가는 여러 분야별로 진행되어 왔다. 크게 살펴보면 다음과 같다. 첫 번째는 가스터빈 쪽의 기술이다. 즉, 기존 천연가스를 이용하는 가스터빈을 어떻게 하면 석탄가스를 사용하는 IGCC 플랜트에 적합하게 맞출 것인가 하는 문제이다. 두 번째는 효율을 어떻게 하면 높일 수 있는가의 문제로서 석탄의 종류, 가스화 방법을 효율적으로 선택, HRSG(heat recovery steam generator)를 효율적으로 설계, 그리고 정제공정에서의 에너지 소비를 줄이는 분야였다. 세 번째는 어떻게 하면 오염을 줄일까의 문제로서 질소나 스팀 분사를 연계하여 NOx를 감소시키고 정제 공정에 사용되는 촉매를 개발한다던지 공정을 발달시키는 분야였다. 이 외에도 여러 종류의 연구가 이 분야에서 있었으나 주로 설계 분야의 연구가 주되였다. 이것은 발전소의 건설을 위한 초기 단계로서 당연한 결과일 수 있다. 그러나, 지금 IGCC 플랜트가 건설되는 과정에 있으므로 우리나라 전력계통 연계와의 문제도 생각해보아야 한다고 생각한다. 따라서 이번 연구에서는 IGCC 플랜트 운영의 불확실성이 약간이라도 존재하기에 이 플랜트가 기저발전 보다는 첨두발전 쪽이나 태양열/광발전, 풍력발전 등 다른 신재생에너지 자원처럼 독립된 전력 시스템으로 운영될 것이라 생각하고 이렇게 운영될 때는 발전소의 부하률의 변화가 심할 수 있다는 가정하에 플랜트의 부하률에 따른 석탄의 합성가스, 연료가스 전환량 및 전환효율 및 발전량 및 발전효율을 전산모사를 통해 예측해보았다.

  • PDF

Experiments on Efficiency of Standing Type Waterwheel with Narrow Canal for Micro/Small Scale Hydro Power Plant (초소수력발전용 좁은 수로 고정형 수직수차 성능실험)

  • Kim, Dong-Jin;Lee, Kyong-Ho;Ahn, Kook-Chan;Kim, Bong-Hwan;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.104-108
    • /
    • 2012
  • Recently, small scale hydropower needs to be developed due to its clean, renewable and abundant energy resources. However, suitable draft of hydro-turbine body in combination with differences in wheel blade shapes is not determined yet in the range of small hydropower and it is necessary to study for the effective draft in combination with type. Therefore, watermill shaped of 250mm diameter. hydro-turbine aiming 20 watt class generator is adopted in this study because of its simple structure and high possibility of applying to small hydropower. The result shows that effective draft for the turbine body is variable concerning the size of turbine and flow rate of water. Thus, the difference of water depth between fore and aft turbine body contributes to the increase of torque, angular momentum and power output.

Preliminary study and development of $kW_e$-class liquid fuel based SOFC system (액상 연료 용 $kW_e$급 SOFC 시스템 사전 연구 및 개발)

  • Yoon, Sang-Ho;Kim, Sun-Young;Bae, Joong-Myeon;Baek, Seung-Whan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.21-24
    • /
    • 2008
  • We have developed a $kW_e$ class liquid fuel based solid oxide fuel cell (SOFC) system. Our final target is to develop the 1 $kW_e$ diesel based SOFC system for residential power generator(RPG). In this study, we present the conceptual design of SOFC system. System is composed of hot-box and cold-box. Planar typed SOFC stack, heat exchanger, combustor for stack tail gas, and fuel processor, such as fuel reformer and desulfurizer, are contained in the hot-box. And several balance of plants(BOP), such as fuel suppliers and controller, are contained in the cold-box. Before the SOFC system fabrication, we have already operated the selfsustaining fuel processor, and heat exchange of all heat-related components is simulated using ASPEN HYSYS, because heat maintenance and management in hot-box are important for stable operation of SOFC system. The self-sustained fuel processor was successfully operated for about 250 hours, and heat exchange is enough to operate the SOFC system.

  • PDF

Testing a Commercial Gas Engine using Synthetic Biogas (합성 바이오가스를 이용한 상용 가스엔진 발전기의 구동 특성)

  • Shim, Jae-Hoon;Hong, Seong-Gu;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.592-597
    • /
    • 2005
  • Biogas is widely accepted as one of renewable energy. Raw biogas can be used in internal combustion engines either spark ignition or diesel engines. Since the gas has relatively low calorific values, engine power also is lower than rated power values. Modified engines or biogas-specific engines have been utilized in order to increase efficiency. Recently, gas engine/generators are provided for various purposes. They are mostly for LPG or natural gas. When biogas is fueled to the gas engines, de-rating is inevitable due to its lower calorific values. Meanwhile, massively produced commercial gas engines are more competitive in terms of initial investment for engines, compared to biogas-specific engines. Then, the characteristics of the commercial engine and power generation should be understood for better operation. A 5kW gas engine/generator(natural gas) was tested for determining an allowable maximum concentration of $CO_2$ in synthetic biogas, with respect to engine stating, power generation. Experimental results indicated that about 65% of methane concentration is required to start the gas engine. At this condition, the power generated was about 3 kW. It is about 60% of the nominal power, which is similar to the ratio of calorific values.

  • PDF

A Study on the Economic of Electrical Storage Device of Stand Alone PV/Wind Hybrid System Based upon Sunless Days (부조일에 따른 독립형 태양광 풍력 복합발전 시스템에서 전기저장장치의 경제성에 관한 연구)

  • Choi, Byoung-Soo;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.3
    • /
    • pp.16-23
    • /
    • 2012
  • This paper relates to a study on the economic of electrical storage device for supplying power in sunless days, in the stand alone PV/Wind hybrid system, which it is applied to separate houses. In a photovoltaic/wind hybrid power system used in a separate house, when only the battery is used in sunless days, the capacity of the battery is become larger. For example, as in recent days, if cloudy days are frequent due to anomaly climate, it is difficult to supply power stably by only the battery based upon pre-estimated sunless days. Accordingly, in order to supply stably power of new renewable energy such as solar to any separate houses, it is preferable to reduce the capacity of battery by decreasing the number of sunless days when estimating the capacity of battery and to drive the small generator for compensation of the power shortage.

Development of Inverter fault diagnostic algorithm based on CT for small-sized wind turbine system (CT기반의 소형 풍력발전 시스템 인버터 고장진단 알고리즘 개발)

  • Moon, Dae-Sun;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.767-774
    • /
    • 2011
  • In recent years, wind turbine system has been considered as the most efficient renewable energy source. Wind turbine system is a complex system which is composed of blade, generator and inverter systems. Recently, lots of researches on fault detection and diagnosis of wind turbine system have been done. Most of them are related with the fault diagnosis of mechanical elements using bivration signal. In this work, a new type of inverter fault detection and diagnstic algorithm is proposed. Furthermore, extensive simulation studies and practical experiments are carried out to verify the proposed algorithm.

Concept and Prelimimary Design of Large Offshore wind turbine system (해상용 대형 풍력 발전 시스템의 개념 설계와 기본 설계에 관한 연구)

  • Jung Ji-Young;Shin Hyung-Ki;Park Kwang-Kun;Choi Woo-Young;Park Ji-Woong;Kim Ho-Geon;Lee Soo-Gab;Smith Robert Rawlinson;Jamieson Peter;Quarton David
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.241-244
    • /
    • 2006
  • Recently wind turbines become large, constructed as farms and going out to offshore. Different design approach from onshore is needed for offshore wind turbine. At this paper concept and preliminary design of an offshore wind turbine of 3MW rated power are performed. The concept design started from modelling of the generator and gearbox. With these modelling the optimum specifications was acquired. Integrated type of drive train is designed with all parts are mounted on the tower top as the offshore maintenance strategy. At the preliminary stage control system, power production algorithm and safety system are designed. Load calculation is also performed. The 3MW offshore wind turbine concept/preliminary design and the process of design are obtained as results.

  • PDF

Gastrointestinal endoscopy's carbon footprint

  • Su Bee Park;Jae Myung Cha
    • Clinical Endoscopy
    • /
    • v.56 no.3
    • /
    • pp.263-267
    • /
    • 2023
  • Climate change is a global emergency. Consequently, current global targets to combat the climate crisis include reaching net-zero carbon emissions by 2050 and keeping global temperature increases below 1.5 ℃. In 2014, the healthcare carbon footprint was 5.5% of the total national footprint. Gastrointestinal endoscopy (GIE) has a large carbon footprint compared to other procedures performed in healthcare facilities. GIE was identified as the third largest generator of medical waste in healthcare facilities for the following reasons: (1) GIE is associated with high case volumes, (2) GIE patients and relatives travel frequently, (3) GIE involves the use of many nonrenewable wastes, (4) single-use devices are used during GIE, and (5) GIE is frequently reprocessed. Immediate actions to reduce the environmental impact of GIE include: (1) adhering to guidelines, (2) implementing audit strategies to determine the appropriateness of GIE, (3) avoiding unnecessary procedures, (4) using medication rationally, (4) digitalization, (5) telemedicine, (6) critical pathways, (7) outpatient procedures, (8) adequate waste management, and (9) minimizing single-use devices. In addition, sustainable infrastructure for endoscopy units, using renewable energy, and 3R (reduce, reuse, and recycle) programs are necessary to reduce the impact of GIE on the climate crisis. Consequently, healthcare providers need to work together to achieve a more sustainable future. Therefore, strategies must be implemented to achieve net-zero carbon emissions in the healthcare field, especially from GIE, by 2050.

The Design and Experiment of Piezoelectric Energy-Harvesting Device Imitating Seaweed (해조류를 모방한 압전 에너지 수확 장치의 설계와 실험)

  • Kang, Tae-Hun;Na, Yeong-Min;Lee, Hyun-Seok;Park, Jong-Kyu;Park, Tae-Gone
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.73-84
    • /
    • 2015
  • Electricity generation using fossil fuels has caused environmental pollution. To solve this problem, research on new renewable energy sources (solar, wind power, geothermal heat, etc.) to replace fossil fuels is ongoing. These devices are able to generate power consistently. However, they have many weaknesses, such as high installation costs and limits to possible setup environments. Therefore, an active study on piezoelectric harvesting technology that is able to surmount the limitations of existing energy technologies is underway. Piezoelectric harvesting technology uses the piezoelectric effect, which occurs in crystals that generate voltage when stress is applied. Therefore, it has advantages, such as a wider installation base and lower technological costs. In this study, a piezoelectric harvesting device imitating seaweed, which has a consistent motion caused by fluid, is used. Thus, it can regenerate electricity at sea or on a bridge pillar, which has a constant turbulent flow. The components of the device include circuitry, springs, an electric generator, and balancing and buoyancy elements. Additionally, multiphysics analysis coupled with fluid, structure, and piezoelectric elements is conducted using COMSOL Multiphysics to evaluate performance. Through this program, displacement and electric power were analyzed, and the actual performance was confirmed by the experiment.