• Title/Summary/Keyword: Renewable electricity

Search Result 554, Processing Time 0.031 seconds

Recent Advances in Thermoelectric Power Generation Technology

  • Sharma, Ashutosh;Lee, Jun Hyeong;Kim, Kyung Heum;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.9-16
    • /
    • 2017
  • Thermoelectric power generation (TEG) technology with high figure of merit (ZT) has become the need of the modern world. TEG is a potent technology which can tackle most of the environmental issues such as global warming, change in climatic conditions over the globe, and for burning out of various resources of non-renewable energy like as petroleum deposits and gasolines. Although thermoelectric materials generally convert the heat energy from wastes to electricity according to the theories Seebeck and Peltier effects yet they have not been fully exploited to realize their potential. Researchers are focusing mainly on how to improve the current ZT value from 1 to 2 or even 3 by various approaches. However, a higher ZT value is found to be difficult due to complex thermoelectric properties of materials. Hence, there is a need for developing materials with high figure of merit. Recently, various nanotechnological approaches have been incorporated to improve the thermoelectric properties of materials. In this review paper, the authors have performed a thorough literature survey of various kinds of TEG technology.

Coal Gasification Performance with Key Operating Variables (주요 운전 변수에 따른 석탄의 가스화 성능 예측)

  • Lee, Seung-Jong;Chung, Seok-Woo;Yun, Yong-Seung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.437-440
    • /
    • 2007
  • Gasification converts coal and other feedstocks into a very clean and usable gas, called syngas, that can be used to produce a wide variety products such as electricity, chemicals, transports fuels, hydrogen production, etc. This paper was studied the gasification performance effects with the variation of the gasification operating parameters such as the feeding amounts of oxygen, steam and coal. When $O_2/coal$ ratio was below 0.8, $H_2$ mole % was increased as increasing $O_2/coal$ ratio. CO mole % was increased when $O_2/coal$ ratio was below 1.2 as increasing the $O_2/coal$ ratio. As increasing steam/coal ratio, $H_2$ mole %was increased and CO mole % was decreased. The $O_2/coal$ and steam/coal ratio was $0.8{\sim}0.9$ and $0.0{\sim}0.4$, respectively, to keep the proper gasification condition that the gasifier temperature was $1300^{\circ}C{\sim}1450^{\circ}C$ and the cold gas efficiency was over 76%.

  • PDF

An Optimal Installation Strategy for Allocating Energy Storage Systems and Probabilistic-Based Distributed Generation in Active Distribution Networks

  • Sattarpour, Tohid;Tousi, Behrouz
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.350-358
    • /
    • 2017
  • Recently, owing to increased interest in low-carbon energy supplies, renewable energy sources such as photovoltaics and wind turbines in distribution networks have received considerable attention for generating clean and unlimited energy. The presence of energy storage systems (ESSs) in the promising field of active distribution networks (ADNs) would have direct impact on power system problems such as encountered in probabilistic distributed generation (DG) model studies. Hence, the optimal procedure is offered herein, in which the simultaneous placement of an ESS, photovoltaic-based DG, and wind turbine-based DG in an ADN is taken into account. The main goal of this paper is to maximize the net present value of the loss reduction benefit by considering the price of electricity for each load state. The proposed framework consists of a scenario tree method for covering the existing uncertainties in the distribution network's load demand as well as DG. The collected results verify the considerable effect of concurrent installation of probabilistic DG models and an ESS in defining the optimum site of DG and the ESS and they demonstrate that the optimum operation of an ESS in the ADN is consequently related to the highest value of the loss reduction benefit in long-term planning as well. The results obtained are encouraging.

The effect of dye coloring temperature on the dye-sensitized solar cells (염료감응형 태양전지의 염료 흡착 온도의 영향에 관한 연구)

  • Lee, Kyoung-Jun;Kim, Jeong-Hoon;Hong, Ji-Tae;Son, Min-Kyu;Seo, Hyun-Woong;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1279-1280
    • /
    • 2008
  • A serious problem of the 21st century is the supply of energy resources. Reserves of fossil fuels are facing depletion: renewable energy resources must be developed in this era. Dye sensitized solar cells(DSC) have been very economical and easy method to convert solar energy to electricity. DSC can reach low costs in future outdoor power applications. However, to commercialize the DSC, there are still many shortages to overcome. When the DSC is commercialized in the near future, the productivity is an important factor. In the process of soaking in a dye, it usually takes 12${\sim}$24 hours. In this study, we varied the dye coloring temperature from 0$^{\circ}C$ to 60$^{\circ}C$. At the temperature of 40$^{\circ}C$, DSC cell showed the best performance. We also conducted the time variant experiment to reduce the manufacturing time. Counter electrode surface of DSC is deposited by RF magnetron sputtering under the conditions of Ar $2.8{\times}10^{-3}torr$, RF power of 120W and substrate temperature of 100$^{\circ}C$.

  • PDF

The Study of Hybrid system using FC and IPT for Railway system (철도용 연료전지 및 유도급전을 이용한 Hybrid system 연구)

  • Han, K.H.;Lee, B.S.;Park, H.J.;Kwon, S.Y.;Baek, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.218-220
    • /
    • 2008
  • Urban air quality, including carbon-dioxide emissions, and national energy security are related issues affecting the rail industry and transportation sector as a whole. They are related by the fact that (in the United States) 97-98% of the energy for the transport sector is based on oil, and more than 60% is imported. A fuelcell locomotive combines the environmental advantages of a catenary-electric locomotive with the higher overall energy efficiency and lower infrastructure costs of a diesel-electric. Catenaryelectric locomotives, when viewed as only one component of a distributed machine that includes an electricity-generating plant and transmission lines, are the least energy-efficient locomotive type. The natural fuel for a fuelcell is hydrogen, which can be produced from many renewable energies and nuclear energy, and thus a hydrogen-fuelcell locomotive will not depend on imported oil for its energy supply. This paper proposes a base models of Hybrid fuel cell/IPT railway vehicle power system, the necessary of this research.

  • PDF

A sun tracking control system using two DOF active sensor array

  • Ha, Yun-Su;Kim, Jong-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1310-1317
    • /
    • 2014
  • In our daily life, the need of energy increases day by day. However, the amount of natural resources on the earth is limited and thus gaining renewable energy as an energy resource is one of the important and urgent problems. Solar energy is one of the most popular available energy sources that can be converted into electricity by using solar panels. In order for solar panels to produce maximal output power, the incident angle of the sunlight needs to be persistently perpendicular to the solar panel. By the way, most of the solar panels are installed at fixed position and direction. Therefore, as the sun's position changes, it is impossible to produce maximal output power inevitably. To improve this problem, in this paper, a sun tracking system using two degree-of-freedom (DOF) active sensor array is proposed so that the solar panel may always direct sunlight perpendicularly. And also a series of software, such as a search mode and a holding mode, which can control the developed sun tracking system is developed. Several experiments using the implemented sun tracking system are executed and the effectiveness of the system is verified from the experimental results.

The Optimal Operation for Community Energy System Using a Low-Carbon Paradigm with Phase-Type Particle Swarm Optimization

  • Kim, Sung-Yul;Bae, In-Su;Kim, Jin-O
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.530-537
    • /
    • 2010
  • By development of renewable energy and more efficient facilities in an increasingly deregulated electricity market, the operation cost of distributed generation (DG) is becoming more competitive. International environmental regulations of the leaking carbon become effective to reinforce global efforts for a low-carbon paradigm. Through increased DG, operators of DG are able to supply electric power to customers who are connected directly to DG as well as loads that are connected to entire network. In this situation, a community energy system (CES) with DGs is a new participant in the energy market. DG's purchase price from the market is different from the DG's sales price to the market due to transmission service charges and other costs. Therefore, CES who owns DGs has to control the produced electric power per hourly period in order to maximize profit. Considering the international environment regulations, CE will be an important element to decide the marginal cost of generators as well as the classified fuel unit cost and unit's efficiency. This paper introduces the optimal operation of CES's DG connected to the distribution network considering CE. The purpose of optimization is to maximize the profit of CES. A Particle Swarm Optimization (PSO) will be used to solve this complicated problem. The optimal operation of DG represented in this paper would guide CES and system operators in determining the decision making criteria.

Technology of Fuel cell stack fault detection by THDA (전고조파 왜율 분석을 통한 연료전지 스택 고장진단 기술)

  • Kim, UckSoo;Park, HyunSeok;Kang, SunDoo;Eom, JeongYong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.90.1-90.1
    • /
    • 2011
  • This technology is applicable to Electrical vehicle that using Energy from Hydrogen Fueled Cell. Electricity & water is got from chemical reaction between H2 & O2 in stack. This technology is used when fault diagnosis of Fuel cell is needed. It is General method that measure each cell's voltage of stack for fault diagnosis. but, this technology is method of measuring entire voltage of stack. For this reason, fault diagnosis system is simplified and cost of system is lower than previous one. In normal stack condition, characteristic graph of voltage-current has linearity. In fault stack condition, it has non-linearity. we use this characteristic to diagnosis of stack fault. In this technology, Specific frequency current is injected into stack & Stack voltage is measured in response. After that, stack voltage difference is analyzed to diagnosis of stack fault. Presently, Development of current injection module & basic program of THDA is finished. in future we will develop the technology of precise measurement technology about entire stack voltage.

  • PDF

Railway Switching Point Heating System Using the Photovoltaic-Wind Power Hybrid (태양광-풍력 하이브리드를 이용한 철도 선로전환기 융설 장치 구현)

  • Kim, Dae-Nyeon;Park, Han-Eol;Kim, Deok-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.136.1-136.1
    • /
    • 2011
  • This paper proposes the method to implement the railroad switching point heating system using the hybrid of the photovoltaic and wind power. The goal of the implementation of the railroad switching point heating system is to prevent freezing of the snow in the winter. The heating system of railway used to supply electricity through photovoltaic and wind power to prevent freezing. Hot wires of the railroad switching point heating system are used about 2kW of electric energy at the day. The electric energy of 2kW used the length of the hot wires about 3m. As the ON and/or OFF mode considering the tracks temperature and the ambient temperature, so the way the use of power-saving effect. In addition, the system can be used the railroad switching point heating system in winter and railway signal and street lights around the track in summer. In experiment, we acquired the power data according to time at the day of photovoltaic and wind power. We confirmed the temperature rise using the heating cable for 3m of $85^{\circ}C$, 30W/m. The temperature rise of the heating cable changes the temperature of $5^{\circ}C$ after 10 minutes and $11^{\circ}C$ after 10 minutes. We have confirmed the possibility of the railroad switching point heating system using the hybrid of the photovoltaic and wind power.

  • PDF

EMRQ: An Efficient Multi-keyword Range Query Scheme in Smart Grid Auction Market

  • Li, Hongwei;Yang, Yi;Wen, Mi;Luo, Hongwei;Lu, Rongxing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3937-3954
    • /
    • 2014
  • With the increasing electricity consumption and the wide application of renewable energy sources, energy auction attracts a lot of attention due to its economic benefits. Many schemes have been proposed to support energy auction in smart grid. However, few of them can achieve range query, ranked search and personalized search. In this paper, we propose an efficient multi-keyword range query (EMRQ) scheme, which can support range query, ranked search and personalized search simultaneously. Based on the homomorphic Paillier cryptosystem, we use two super-increasing sequences to aggregate multidimensional keywords. The first one is used to aggregate one buyer's or seller's multidimensional keywords to an aggregated number. The second one is used to create a summary number by aggregating the aggregated numbers of all sellers. As a result, the comparison between the keywords of all sellers and those of one buyer can be achieved with only one calculation. Security analysis demonstrates that EMRQ can achieve confidentiality of keywords, authentication, data integrity and query privacy. Extensive experiments show that EMRQ is more efficient compared with the scheme in [3] in terms of computation and communication overhead.