• Title/Summary/Keyword: Renewable Energy Potential

Search Result 416, Processing Time 0.023 seconds

Assessment of electricity demand at domestic level in Balochistan, Pakistan

  • Urooj, Rabail;Ahmad, Sheikh Saeed
    • Advances in Energy Research
    • /
    • v.5 no.1
    • /
    • pp.57-64
    • /
    • 2017
  • Electricity is basic need for country development. But at the present time proper planning and policy is require at high pace for power generation network extension due to the increasing population growth rate. Present study aimed to analyze the present and future demand for electricity at household level in Province of Balochistan of Pakistan via simulation modeling. Data of year 2004-2005 was used as baseline data for electricity consumption to predict future demand of electricity at both rural and urban domestic level up to subsequent 30 years, with help of LEAP software. Basically three scenarios were created to run software. One scenario was Business-As-Usual and other two were green scenarios i.e., solar and wind energy scenarios. Results predicted that by using alternative energy sources, demand for electricity will be fulfill and will also reduce burden on non-renewable energy sources due to the greater potential for solar and wind energy present in Balochistan.

Analysis on the Trade-off between an Hydro-power Project and Other Alternatives in Myanmar

  • Aye, Nyein Nyein;Fujiwara, Takao
    • Asian Journal of Innovation and Policy
    • /
    • v.8 no.1
    • /
    • pp.31-57
    • /
    • 2019
  • Myanmar's current power situation remains severely constrained despite being richly endowed in primary energy sources. With low levels of electrification, the demand for power is not adequately met. Cooperation in energy has been a major focus of future initiative for all developed and developing nations. If we want to solve climate change, and change our energy infrastructure, we need to be innovative and entrepreneurial in energy generation. This paper will help us in examining Bayesian MCMC Analysis for the parameters estimation among the arrival rates of disaster occurrences, firm's expected income-based electricity tariffs, and estimated R&D investment expenses in new energy industry. Focusing on Japan's electric power business, we would like to search the potential for innovative initiatives in new technological energy industry for the regional development and ecological sustainability in Myanmar.

Microwave-Assisted Acid-Hydolysis of Laminaria Japonica and its Ethanol Productivity: Comparison with Conventional Heating (마이크로파를 이용한 다시마의 산 가수분해와 에탄올 생산성: 재래식 가열과 비교)

  • Song, Myoung-Ki;Na, Choon-Ki
    • New & Renewable Energy
    • /
    • v.9 no.2
    • /
    • pp.5-14
    • /
    • 2013
  • The efficiency of microwave-assisted acid hydrolysis of seaweeds for the production of ethanol was investigated and its effect on hydrolysis into reducing sugar and fermentation into ethanol evaluated as compared with those by conventional heating. A brown seaweed, Laminaria japonica (10-100g/L) was hydrolysed under dilute acidic condition (0.5N $H_2SO_4$, $100^{\circ}C$) with two sorts of heating: microwave irradiation for ${\leq}10min$ and conventional heating for 10-60min. Microwave-assisted hydrolysis was shown to be more efficient. A similar range of reducing sugar and ethanol yields as with the conventional autoclave heating procedure(${\geq}30min$) was observed, but it was obvious that production of ethanol from microwave-assisted hydrolysis had a 3 times faster reaction rate leading to very short production times, lower energy consumption/loss than from the conventional heating mode, and higher biomass loading without significant reducing ethanol yield, thus microwave-assisted acid hydrolysis is a potential alternative method for more effective hydrolysis of Laminaria japonica.

Simplified Limit Solutions for the Inclined Load Capacity of a Dynamically Installed Pile in Soft Clay

  • Lee, Junho;Jung, Jong-Suk;Sim, Young-Jong;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.11 no.2
    • /
    • pp.87-94
    • /
    • 2020
  • Offshore renewable energy resources are attractive alternatives in addressing the nation's clean energy policies because of the high demand for electricity in the coastal region. As a large portion of potential resources is in deep and farther water, economically competitive floating systems have been developed. Despite the advancement of floating technologies, the high capital cost remains a primary barrier to go ahead offshore renewable energy projects. The dynamically installed piles (DIPs) have been considered one of the most economical pile concepts due to their simple installation method, resulting in cost and time-saving. Nevertheless, applications to real fields are limited because of uncertainties and underestimated load capacity. Thus, this study suggests the appropriate analytical approach to estimate the inclined load capacity of the DIPs by using the upper bound plastic limit analysis (PLA) method. The validity of the PLA under several conditions is demonstrated through comparison to the finite element (FE) method. The PLA was performed to understand how flukes, soil profiles, and load inclinations can affect the inclined load capacity and to provide reliable evaluations of the total resistance of the DIPs. The studies show that PLA can be a useful framework for evaluating the inclined load capacity of the DIPs under undrained conditions.

Analysis of Performance Characteristic for Small Scale Hydro Power Plant with Long Term Inflow Condition Change (장기유입량 변화에 의한 소수력발전소 성능특성분석)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • New & Renewable Energy
    • /
    • v.5 no.4
    • /
    • pp.39-43
    • /
    • 2009
  • The variation of inflow at stream and hydrologic performance for small scale hydro power(SSHP) plants due to climate change have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for SSHP plants is established. Monthly inflow data measured at Andong dam for 32 years were analyzed. The existing SSHP plant located in upstream of Andong dam was selected and analyzed hydrologic performance characteristics. The predicted results from the developed models show that the data were in good agreement with measured results of long term inflow at Andong dam and the existing SSHP plant. Inflow and ideal hydro power potential had increased greatly in recent years, however, these did not lead annual energy production increment of existing SSHP plant. As a results, it was found that the models represented in this study can be used to predict the primary design specifications and inflow of SSHP plants effectively.

  • PDF

Characteristics of Wind Environment in Dongbok·Bukchon Wind Farm on Jeju (제주 동복·북촌 풍력발전단지의 바람환경 특성분석)

  • Jeong, Hyeong-Se;Kim, Yeon-Hee;Choi, Hee-Wook
    • New & Renewable Energy
    • /
    • v.18 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • Climatic characteristics were described using the LiDAR (Light Detection and Ranging) and the met-mast on Dongbok·Bukchon region. The influences of meteorological conditions on the power performance of wind turbines were presented using the data of Supervisory Control And Data Acquisition (SCADA) and met-mast of the Dongbok·Bukchon Wind Farm (DBWF) located in Jeju Island. The stability was categorized into three parameters (Richardson number, Turbulence intensity, and Wind shear exponent). DBWF was dominant in unstable atmospheric conditions. At wind speeds of 14 m/s or more, the proportion of slightly unstable conditions accounted for more than 50%. A clear difference in the power output of the wind turbine was exhibited in the category of atmospheric stability and turbulence intensity (TI). Particularly, a more sensitive difference in power performance was showed in the rated wind speeds of the wind turbine and wind regime with high TI. When the flow had a high turbulence at low wind speeds and a low turbulence at rated wind speeds, a higher wind energy potential was produced than that in other conditions. Finally, the high-efficiency of the wind farm was confirmed in the slightly unstable atmospheric stability. However, when the unstable state become stronger, the wind farm efficiency was lower than that in the stable state.

A Study on the Floating House for New Resilient Living (새로운 탄력적인 생활을 위한 플로팅 주택에 대한 연구)

  • Moon, Changho
    • Journal of the Korean housing association
    • /
    • v.26 no.5
    • /
    • pp.97-104
    • /
    • 2015
  • This paper aims to discuss the concept of resilience in floating housing, to investigate the resilient features of floating houses & to review the possibility of floating housing as a new form of resilient living, and to suggest some reference ideas for the planning and design of floating housing projects. Resilient features of the floating house can be summarized as the buoyant characteristics for natural disasters, the easy employment & potential use of renewable and nearly self-sufficient energy systems in locations subject to limited energy sources, the movability, mobility, long life, water recycle system, prefabrication and modular construction with the potential for reduced environmental impact. Additional benefits include the potential for a peaceful and comfortable atmosphere due to direct connections with nature, good relationship with neighbors, a solid social spirit of unity, and sense of security. Considering the resilient features of floating house at a time of serious climate change requires a new paradigm, and floating/amphibious/floatable housing has great possibility as a new form of resilient living.

Urgency of LiFePO4 as cathode material for Li-ion batteries

  • Guo, Kelvii Wei
    • Advances in materials Research
    • /
    • v.4 no.2
    • /
    • pp.63-76
    • /
    • 2015
  • The energy crisis involving depletion of fossil fuel resource is not the sole driving force for developing renewable energy technologies. Another driving force is the ever increasing concerns on the air quality of our planet, associated with the continuous and dramatic increase of the concentration of greenhouse gas (mainly carbon dioxide) emissions. The internal combustion engine is a major source of distributed $CO_2$ emissions caused by combustion of gasoline derived largely from fossil fuel. Another major source of $CO_2$ is the combustion of fossil fuels to produce electricity. New technologies for generating electricity from sources that do not emit $CO_2$, such as water, solar, wind, and nuclear, together with the advent of plug-in hybrid electric vehicles (PHEV) and even all-electric vehicles (EVs), offer the potential of alleviating our present problem. Therefore, the relevant technologies in $LiFePO_4$ as cathode material for Li-ion batteries suitable to the friendly environment are reviewed aim to provide the vital information about the growing field for energies to minimize the potential environmental risks.

Challenges of decarbonizing electricity in Indonesia: Barriers in the adoption of solar PV

  • Pradityo Sukarso, Adimas
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.4 no.3
    • /
    • pp.27-35
    • /
    • 2018
  • Around the world, there are increasing efforts underway to decarbonize the electricity generation system to mitigate the environmental impacts including climate change. While Indonesia has a huge potential for new and renewable energy, particularly solar photovoltaic, Indonesia has been largely dependent on fossil fuels. As of 2017, the installed capacity for solar photovoltaic in Indonesia was 78.5MW and this was only 0.04% of the theoretical solar potential, which is around 207.9GW($4.8kWh/m^2/day$). With the case of solar photovoltaic, this paper examined the reasons of low adoption of the technology and the challenges of energy transition in Indonesia from the policy and institutional perspectives.

  • PDF

Equilibrium Conditions of Methane Hydrate added Help Gases (보조가스가 첨가된 메탄 하이드레이트 상평형 조건에 대한 연구)

  • Kim, Nam-Jin;Lim, Sang-Hoon;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.51-58
    • /
    • 2007
  • Gas hydrate is a special kind of inclusion compound that can be formed by capturing gas molecules to water lattice in high pressure and low temperature conditions. When referred to standard conditions, $1m^3$ solid hydrates contain up to $172Nm^3$ of methane gas, depending on the pressure and temperature of production. Such large volumes make natural gas hydrates can be used to store and transport natural gas. In this study, three-phase equilibrium conditions for forming methane hydrate were theoretically obtained in aqueous single electrolyte solution containing 3wt% NaCl. The results show that the predictions match the previous experimental values very well, and it was found that NaCl acts as an inhibitor.