• Title/Summary/Keyword: Renewable Energy Policy

Search Result 425, Processing Time 0.024 seconds

A Study on Consumer Protections for the Introduction of Smart Grid (스마트그리드 도입에 따른 소비자 보호 연구)

  • Kim, Hyun-Jae;Jo, Sung-Han
    • Journal of Digital Convergence
    • /
    • v.9 no.5
    • /
    • pp.1-9
    • /
    • 2011
  • The smart grid can create benefits such as the expansion of consumer choice and flexibility enhancement, adaption to future electric power industry change and the increasing use of renewable energy sources. Consumers can make a contribution to improve the overall effectiveness of system through active receptive response. They can enhance the energy consumption efficiency based on more information from service providers. The Smart Grid Promotion Act, which was enacted in April 2011, contains consumer protection provisions such as information collecting, sharing, and protection measures. On this reason, it is needed to expand promotion and education regarding the smart grid to improve the consumer awareness, and the schemes to enhance smart grid consumer acceptance should be established.

Analysis on short-term decay heat after shutdown during load-follow operation with seasonal and daily scenarios

  • Hwang, Dae Hee;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3878-3887
    • /
    • 2022
  • For the future energy-mix policy for carbon neutrality, demand for the capability of load-follow operation has emerged in nuclear power plants in order to accommodate the intermittency of renewable energy. The short-term decay heat analysis is also required to evaluate the decay heat level varied by the power level change during the load-follow operation, which is a very important parameter in terms of short-term decay heat removal during a grace time. In this study, the short-term decay heat level for 10 days after the shutdown was evaluated for both seasonal and daily load-follow cases. Additionally, the nuclide-wise contribution to the accumulated decay heat for 10 days was analyzed for further understanding of the short-term decay heat behavior. The result showed that in the seasonal case, the decay heat level was mainly determined by the power level right before the shutdown and the amount of each nuclide was varied with the power variation due to the long variation interval of 90 days. Whereas, in the daily case, the decay heat level was strongly impacted by the average power level during operation and meaningful mass variations for those nuclides were not observed due to the short variation interval of 0.5 days.

A Study on Safety Policies for a Transition to a Hydrogen Economy (수소경제로의 이행을 위한 안전관리 정책 연구)

  • Jun, Daechun
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.2
    • /
    • pp.161-172
    • /
    • 2014
  • Hydrogen, which can be produced from abundant and widely distributed renewable energy resources, seems to be a promising candidate for solving the concerns for improving energy security, urban air pollution, and reducing greenhouse gas emissions. The two primary motivating factors for hydrogen economy are fossil fuel supply limitations and concerns about global warming. But the safety issues associated with hydrogen economy need to be investigated and fully understood before being considered as a future energy source. Limited operating experience with hydrogen energy systems in consumer environments is recognised as a significant barrier to the implementation of hydrogen economy. To prevent unnecessary restrictions on emerging codes, standards and local regulations, safety policies based on real hazards should be developed. This article studies briefly the direct impact-distances from hazard events such as hydrogen release and jet fire, and damage levels from hydrogen gas explosion in a confined space. Based on the direct impact-distances indicated in the accident scenarios and consumer environments in Korea, the safety policies, which are related to hydrogen filling station, hydrogen fuel cell car, portable fuel cell, domestic fuel cells, and hydrogen town, are suggested to implement hydrogen economy. To apply the safety policies and overcome the disadvantages of prescriptive risk management, which is setting guidance in great detail to management well known risk but is not covering unidentified risk, hybrid risk management model is also proposed.

Analysis on the Water Footprint of Crystalline Silicon PV System (결정질 실리콘 태양광시스템의 물 발자국 산정에 대한 연구)

  • Na, Won-Cheol;Kim, Younghwan;Kim, Kyung Nam;Lee, Kwan-Young
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.449-456
    • /
    • 2014
  • There has been increasing concerns for the problems of water security in countries, caused by the frequent occurrence of localized drought due to the climate change and uncertainty of water balance. The importance of fresh water is emphasized as considerable amount of usable fresh water is utilized for power generation sector producing electricity. PV power system, the source of renewable energy, consumes water for the every steps of life cycle: manufacturing, installation, and operation. However, it uses relatively less water than the traditional energy sources such as thermal power and nuclear power sources. In this study, to find out the use of water for the entire process of PV power system from extracting raw materials to operating the system, the footprint of water in the whole process is measured to be analyzed. Measuring the result, the PV water footprint of value chain was $0.989m^3/MWh$ and the water footprint appeared higher specially in poly-Si and solar cell process. The following two reasons explain it: poly-Si process is energy-intensive process and it consumes lots of cooling water. In solar cell process, deionized water is used considerably for washing a high-efficiency crystalline silicon. It is identified that PV system is the source using less water than traditional ones, which has a critical value in saving water. In discussing the future energy policy, it is vital to introduce the concept of water footprint as a supplementary value of renewable energy.

Through load prediction and solar power generation prediction ESS operation plan(Guide-line) study (부하예측 및 태양광 발전예측을 통한 ESS 운영방안(Guide-line) 연구)

  • Lee, Gi-Hyun;Kwak, Gyung-il;Chae, U-ri;KO, Jin-Deuk;Lee, Joo-Yeoun
    • Journal of Digital Convergence
    • /
    • v.18 no.12
    • /
    • pp.267-278
    • /
    • 2020
  • ESS is an essential requirement for resolving power shortages and power demand management and promoting renewable energy at a time when the energy paradigm changes. In this paper, we propose a cost-effective ESS Peak-Shaving operation plan through load and solar power generation forecast. For the ESS operation plan, electric load and solar power generation were predicted through RMS, which is a statistical measure, and a target load reduction guideline for one hour was set through the predicted electric load and solar power generation amount. The load and solar power generation amount from May 6th to 10th, 2019 was predicted by simulation of load and photovoltaic power generation using real data of the target customer for one year, and an hourly guideline was set. The average error rate for predicting load was 7.12%, and the average error rate for predicting solar power generation amount was 10.57%. Through the ESS operation plan, it was confirmed that the hourly guide-line suggested in this paper contributed to the peak-shaving maximization of customers.Through the results of this paper, it is expected that future energy problems can be reduced by minimizing environmental problems caused by fossil energy in connection with solar power and utilizing new and renewable energy to the maximum.

A Study on Policy Trends and Location Pattern Changes in Smart Green-Related Industries (스마트그린 관련 산업의 정책동향과 입지패턴 변화 연구)

  • Young Sun Lee;Sun Bae Kim
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.38-52
    • /
    • 2024
  • Digital transformation industry contributes to the improvement of productivity in overall industrial production, the smart green industry for carbon neutrality and sustainable growth is growing as a future industry. The purpose of this paper is to explore the status and role of the industry in the future industry innovation ecosystem through the analysis of the growth drivers and location pattern changes of the smart green industry. The industry is on the rise in both metropolitan and non-metropolitan areas, and the growth of the industry can be seen in non-metropolitan and non-urban areas. In particular, due to the smart green industrial complex pilot project, the creation of Gwangju Jeonnam Innovation City, and the promotion of new and renewable energy policies, the emergence of core aggregation areas (HH type) in the coastal areas of Honam and Chungcheongnam-do, and the formation of isolated centers (HL type) in the Gyeongsang region, new and renewable energy production companies are being accumulated in non-metropolitan areas. Therefore, the smart green industry is expected to promote the formation of various specialized spokes in non-urban areas in the future industrial innovation ecosystem that forms a multipolar hub-spoke network structure, where policy factors are the triggers for growth.

The Feasibility Analysis for PungDo Tidal Current Power Generation using SeaGen 1.2MW(600kW×2) Turbine (SeaGen 1.2MW(600kW×2)급 터빈을 이용한 풍도조류발전 타당성 분석)

  • Park, Tae-Young;Kim, Han-Sung;Kim, Yun-Wan;Park, Joo-Il;Kim, Kyung-Su
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.386-393
    • /
    • 2013
  • An feasibility analysis is performed for the tidal current power generation with the examination of the sea water speed distribution at Pungdo. In this analysis, the water speed distribution which is the key issue was obtained from the actual speed distribution data and results in "the annual current tidal power". Due to the lack of cost information, we applied EPRI data from the internet site instead of the actual information. The result could be used as a base data for the construction of current tidal power plant in the near future. And it is expected to provides good data for the Energy policy.

An Experimental Study on the Spray and Lean Combustion Characteristics of Bio-enthanol-Gasoline Blended Fuel of GDI (직접분사식 바이오에탄올-가솔린 혼합연료의 분무 및 희박연소 특성에 관한 실험적 연구)

  • Park, Gi-Young;Kang, Seok-Ho;Kim, In-Gu;Lim, Cheol-Soo;Kim, Jae-Man;Cho, Yong-Seok;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.115-122
    • /
    • 2014
  • As a demand for an automobile increases, air pollution and a problem of the energy resources come to the fore in the world. Consequently, governments of every country established ordinances for green-house gas reduction and improvement of air pollution problem. Especially, as international oil price increases, engine using clean energy are being developed competitively with alternative transportation energy sources development policy as the center. Bio ethanol, one of the renewable energy produced from biomass, gained spotlight for transportation energy sources. Studies are in progress to improve fuel supply methods and combustion methods which are key features, one of the engine technologies. DI(Direct Injection), which can reduce fuel consumption rate by injecting fuel directly into the cylinder, is being studied for Green-house gas reduction and fuel economy enhancement at SI(Spark Ignition). GDI(Galoine Direct Injection) has an advantage to meet the regulations for fuel efficiency and $CO_2$ emissions. However it produces increased number of ultrafine particles, that yet received attention in the existing port-injection system, and NOX. As fuel is injected into the cylinder with high-pressure, a proper injection strategy is required by characteristics of a fuel. Especially, when alcohol type fuel is considered. In this study, we tried to get a base data bio-ethanol mixture in GDI, and combustion for optimization. We set fuel mixture rate and fuel injection pressure as parameters and took a picture with a high speed camera after gasoline-ethanol mixture fuel was injected into a constant volume combustion chamber. We figured out spraying characteristic according to parameters. Also, we determine combustion characteristics by measuring emissions and analyzing combustion.

Beyond Nuclear Power: Risks, Alternatives, and Laypersons' Role (원자력발전을 넘어: 위험, 대안, 그리고 비전문가 역할)

  • Huh, Chan Rhan;Kwon, Sangcheol
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.163-180
    • /
    • 2021
  • Nuclear power has been an attractive energy efficient and to the pressure with the climate change despite of its risks. There are safety, security, and environmental concerns with the nuclear radiation, but the techno-optimism forms the mainstream by experts and the state to be able to control and manage the risks yet occurred. The disastrous Chernobyl and Fukushima nuclear accidents brought about alternative action and thought including renewable energy expansion, efficient energy delivery and use, and enhancing stewardship to environmental carrying capacity. More significant alternative movement is sought by victims of nuclear radiation, technicians, and the general public who realized the pitfalls of expert and state centered policy formation. These laypersons become counter-expertise competent in recognizing local contamination and considering the risks and emotions seriously affecting peoples' everyday lives. They play important roles in the construction and legitimation of alternative knowledge about nuclear power widely realized across regions.

Current Status of Standardization for Quality Control of Hydrogen Fuel in Hydrogen Refueling Stations for Fuel Cell Electric Vehicles (수소충전소 내 연료전지용 수소연료 품질 관리 및 표준화 동향)

  • KIM, DONGKYUM;LIM, JEONG SIK;LEE, JEONGSOON
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.4
    • /
    • pp.284-292
    • /
    • 2022
  • Hydrogen is promising a candidate for energy supporting the carbon neutrality policy for greenhouse gas reduction, which is being promoted in several countries, including Korea. Although challenging efforts-such as lowering the costs of green hydrogen production and fuel cells-remain, hydrogen fuel cell electric vehicles (FCEVs) are expected to play a significant role in the energy transition from fossil fuels to renewable energy. In line with this objective, the hydrogen FCEV working group in the International Organization for Standardization (ISO) compiled and revised international standards related to hydrogen refueling stations as of 2019. A well-established hydrogen quality management system based on the standard documents will increase the reliability of hydrogen charging stations and accelerate the use of FCEVs. In this study, among the published ISO standards and other references, the main requirements for managing charging stations and developing related techniques were summarized and explained. To respond preemptively to the growing FCEV market, a continuous hydrogen quality monitoring method suitable for use at hydrogen charging stations was proposed.