• 제목/요약/키워드: Removal ratio

검색결과 1,609건 처리시간 0.025초

고추수확기의 탈실장치 개발 (I) - 탈실장치의 소형화와 회수율의 제고 - (Development of a Pepper Removal Mechanism for a Red-Pepper Harvester (I)- Size Reduction of the Pepper Removal Mechanism and Improvement of Pepper Recovery Ratio -)

  • 이종호;박승제;이중용
    • Journal of Biosystems Engineering
    • /
    • 제22권2호
    • /
    • pp.177-188
    • /
    • 1997
  • A pepper harvester using a pair of counter rotating helically wound cylinders as a pepper removal mechanism has been developed. Pepper harvesting by machines under the customary cultivation practice was expected to lower land productivity, that most farmers were concerned about. As one way to compensate for loss in land productivity by machine harvest, experts on pepper cultivation suggested change of both varieties and plant density per area. From the view of machine design, their suggestion implied that distance between rows should be narrower and height of the pepper removal mechanism could be shorter. Experiments to improve perfect pepper recovery ratio and to reduce size of the pepper removal mechanism was accomplished. In order to be a economically feasible harvester, minimum pepper recovery ratio was required to be greater or equal to 80%. The research goal was achieved by both reducing the diameter of the wire-helices from 30 cm to 18 cm and increasing rotational speed of the wire-helices up to 425 rpm. The best perfect pepper recovery ratio was 82.3%. Validity of experiment design and interpretation on statistical analysis were discussed. To understand the pepper removal mechanism properly, a pepper removal theory based physics was judged to be necessary.

  • PDF

Fenton 산화를 이용한 김포매립지 침출수내 난분해성 (A Study on the Removal of Refractory Organic Matter in Leachate sampled at Kimpo Landfill by means of Fenton Oxidation Process)

  • 정동환;조일형;김익수;한인규;정문호
    • 한국환경보건학회지
    • /
    • 제26권4호
    • /
    • pp.49-57
    • /
    • 2000
  • This study was carried out to find the optimal condition to treat refractory organic matter which can’t treat clearly with biological treatment and to find the optimal division dosage and division dose timing in the modification of Fenton oxidation which is used resolve the problem that hydrogen peroxide is too expensive. The results are following; 1. The highest TOC removal efficiency was 41% and color removal efficiency was 64% when the dilution magnitude of leachate is fold. This suggests that dilution is efficiency when high concentration of leachate is treated. 2. The removal efficiency of TOC and color increased up to the molar ratio between ferrate and hydrogen peroxide was 1:1. However above that ratio, removal efficiency hardly increased. The highest removal efficiency of TOC and color were 38% and 71% when the mole ratio of ferrate to hydrogen peroxide was 1.5:1. 3. When the mole ratio between ferrate and hydrogen peroxide was fixed, the removal efficiency of TOC and color increased as the dosage of hydrogen peroxide increased. 4. pH of samples were adjusted at pH 3, 5, 7, 9, 11. After oxidation reaction, pH of samples were dropped to 2.59, 2.54, 5.34, 6.36 and 9.68. The highest color removal efficiency was 75.7% when initial pH was at pH 7. 5. The removal of TOC and color was ended within 10. min. and the removal efficiency increased logarithmically within 10min. However after 10 min., the removal efficiency of hardly increased. 6. The color removal efficiency was higher with modification of fentone oxidation than that with fentone oxidation by 5%. Optimal division dosage ratio was 1:1 and optimal dose timing ratio was 2:1. However the TOC removal efficiency was not higher with modification of Fenton oxidation than that with Fenton oxidation.7. The CO $D_{Mn}$ /BO $D_{5}$ Ratio decreased with the time went by. It meant bioresolution increased as time went by. However, after 15 min., the CO $D_{Mn}$ /BO $D_{5}$ Ratio did not decrease any more. 8. In the case of $H_2O$$_2$ Divisiom Dose experiment, the increase of bioresolution was highest at the $H_2O$$_2$ Division dosage Ratio of 3:7.3:7.

  • PDF

다단층 부착성장 공법($A^2/O$향)에서 순환비에 따른 질소제거 (Nitrogen Removal in the Multi-stage Bed Attached Growth Process of $A^2/O$ System with Interanal Recycle Ratio)

  • 최규철;윤용수;정일현
    • 환경위생공학
    • /
    • 제12권3호
    • /
    • pp.95-102
    • /
    • 1997
  • The process which can stabilize water quality of treatment and improve nitrogen removal rate under the condition of high organic loading was developed by charging fibrous HBC media to single sludge nitrification-denitrification process. This process was operated easier, minimized the treatment cost, and shortened the retention time. To improve T-N removal rate, a part of nitrifing liquid at aerobic zone was recycled to anoxic zone by approximate internal recycle ratio. The experimental results are as follows ; T-N removal efficiency in the organic volumetric loading 0.14-0.19 kg/COD/m$^{3}$·d was obtained asmaxium of 85% at internal recycle ratio 2.5 and in more ratio than this it was decreased. Organic removal efficiency was about 91% under the overall experimental conditions and not influenced by recycle ratio.

  • PDF

Estimation of Optimal Operation Conditions in Step Feed Processes Based on Stoichiometric Nitrogen Removal Reactions

  • Lee, Byung-Dae
    • 한국응용과학기술학회지
    • /
    • 제28권1호
    • /
    • pp.6-9
    • /
    • 2011
  • Step feed process was analyzed stoichiometrically for the optimal operation conditions in this study. In case of optimal operation conditions, minimum R (sludge recycling) value, r (internal recycling ratio) value, and n (influent allocation ratio) value for the step feed process to acquire the maximum TN removal efficiency were identified by theoretical analysis. Maximum TN removal efficiency, based on stoichiometric reaction, can be obtained by controlling n value for the step feed process.

ASBR(Anaerobic Sequencing Batch Reactor) 공정의 F/R비가 암모니아가 탈기된 축산폐수의 유기물 제거에 미치는 영향 (Effect of F/R ratio of ASBR (Anaerobic Sequencing Batch Reactor) Process on Removal of the Organic Matters in Ammonia Stripped Swine Wastewater)

  • 황규대;조영무
    • 한국물환경학회지
    • /
    • 제21권6호
    • /
    • pp.687-694
    • /
    • 2005
  • Lab-scale experiments have been carried out to investigate the effect of F/R ratio of ASBR (Anaerobic Sequencing Batch Reactor) process on the removal of the organic matters in ammonia stripped swine wastewater. Three ASBR inoculated with sludge mixed with granular sludge of UASB (Upflow Anaerobic Sludge Blanket) and anaerobic digested sludge of municipal wastewater treatment plant were operated. Ammonia stripped swine wastewater was used as influent. Prior to conducting the experiments with varied conditions, the effect of increasing organic loading rate from 2.34 to $5.79gTCOD_{Cr}/L$-day at a fixed F/R ratio of 0.1 on the organic removal efficiency has been studied during start-up period. As the result of the experiment, under the condition of varied organic loadings, less than $4.14gTCOD_{Cr}/L$-day, the removed efficiency $TCOD_{Cr}$ of the ASBR process is 83% resulted from the mean value of effluent $TCOD_{Cr}$, 9,125 mg/L during the start-up period. Then ASBRs were operated with F/R ratio of 0.024, 0.303 and 0.91 respectively. Organic loading rate was increased from 4.56 to $15.43gTCOD_{Cr}/L$-day to investigate the effects of F/R ratio and organic loading rate on the organic removal efficiency. As the result of the experiment, less than $6.23gTCOD_{Cr}/L$/L-day, F/R ratio haven't an effect on the organic removal efficiency and the mean removal efficiency of TSS, $TCOD_{Cr}$ and $SCOD_{Cr}$ was about 80%, 86% and 78% at the all of F/R ratio. But as organic loading rate was increased from 8.54 to $12.04gTCOD_{Cr}/L$-day at the F/R ratio of 0.024, the removal efficiency of $SCOD_{Cr}$ decreased from 71% to 63%. The range of decreased removal efficiency of $SCOD_{Cr}$ at the F/R ratio of 0.024 was much more higher than at the F/R ratio of 0.303, 0.91. Thus, as organic loading rate was increased, ASBRs were operated with high F/R ratio to obtain high removal efficiency.

BACC를 이용한 축산폐수의 암모니아성 질소 및 유기물의 제거 II. COD/N비가 질소 및 유기물 제거에 미치는 영향 (Removal of Ammonia Nitrogen and Organics from Piggery Wastewater Using BACC Process-II. Effect of COD/N on Removal of NItrogen and Organics)

  • 성기달;류원률;김인환;조무환
    • KSBB Journal
    • /
    • 제16권2호
    • /
    • pp.140-145
    • /
    • 2001
  • To treat piggery wastewater containing refractory compounds including nitrogen, physical treatments using zeolite and biological processes were investigated. In biogical treatment, the removal efficiencies of organics and nitrogen in bioreador using BACC (Biological Activated Carbon Cartridge) media filled with granule activated carbon were examined. The best removal efficiencies achieved for TKN and COD(sub)cr were 82% and 53% respectively, when zeolite dosage was 300 g/L. Specific nitrogen removal ability was 3.2 mg/g at a zeolite dosage of 50 g/L, whereas specific nitrogen removal ability was 1.8 mg/g at a zeolite dosage of 300 g/L. The increased of C/N ratio resulting from the removal of nitrogen using zeolite led to an increase in removal efficiency of organics. As C/N ratio was increased to 2.0, 2.44 and 6.58 at a HRT of 48 hours in a BACC bioreactor, removal efficiencies of COD(sub)cr were increased to 53.5%, 57.4% and 80.6%. The removal efficiency of wastewater using a zeolite dosage of 399 g/L was increased by 27.1% compared to that of control treatment.

  • PDF

산성 및 유기성 가스의 동시제거를 위한 준건식 세정시스템의 적정 운전 조건 (Optimal Operation Condition of Spray Drying Sorber for Simultaneous Removal of Acidic and Organic Gaseous Pollutants)

  • 백경렬;구자공
    • 한국환경과학회지
    • /
    • 제10권1호
    • /
    • pp.59-64
    • /
    • 2001
  • The effect of major operating parameters in spray drying sorber(=SDS) for automatic control for the simultaneous removal of acidic and organic gaseous pollutants from solid waste incinerator was performed. The field experiment was carried out in pilot scale test for the quantification of major operating parameters of hydrophilic and the hydrophobic pollutants. The removal efficiencies of $SO_2$and HCI in the 5wt% slurry condition were being increased with the increase of the stoichiometric ration which is the molecular ratio of lime to the pollutant concentration, and with the decrease of inflow flue gas temperature in the pilot SDS reactor. The removal efficiency along the height of spray drying sorber was closely related to the temperature profile, and more than 90% of total removal efficiency was achieved in an absorption region. For the removal of acidic gas the optimum operating condition considering the economics and a stable operation is the 5wt% of slurry concentration, 1.2 of stoichiometric ratio and 25$0^{\circ}C$ of inflow flue gas temperature. For the organic gases of benzene and toluene the removal efficiencies were 20-60% which is much lower than that of acidic gas. The best removal efficiency was obtained at 1.5 of stoichiometric ratio and 25$0^{\circ}C$ of inflow flue gas temperature. The organic\`s removal efficiency along the height of spray drying sorber was quite different from that of acidic gas, that is, more than 60% of the total removal efficiency for benzene and 90% of the total removal for toluene were achieved in the dried adsorption region, which was formed at the lower or exit part of the reactor.

  • PDF

BNR에 의한 하수의 고도처리에 미치는 NH3 스트리핑 전처리의 영향 (Effect of Pre-NH3 Stripping on the Advanced Sewerage Treatment by BNR)

  • 서정범;안광호
    • 한국물환경학회지
    • /
    • 제22권5호
    • /
    • pp.846-850
    • /
    • 2006
  • The biological nutrient removal from domestic wastewater with low C/N ratio is difficult. Therefore, this study was performed to increase influent C/N ratio by ammonia stripping without required carbon source and for improving treatment efficiencies of sewerage by the combination process of ammonia stripping and BNR (StripBNR). The results of this study were summarized as follows. BOD removal efficiencies of BNR and StripBNR were 95.3% and 93.2%, respectively. T-N and T-P removal efficiencies of BNR were 53.3% and 40.8%, respectively. T-N and T-P removal efficiencies of StripBNR were 72.8% and 62.9%, respectively. Concentrations of $NH_3-N$, $NO_2-N$ and $NO_3-N$ at BNR effluent were 0.03 mg/L, 0.08 mg/L and 9.12 mg/L, respectively. On the other hands, concentrations of $NH_3-N$, $NO_2-N$ and $NO_3-N$ at StripBNR effluent were 5.79 mg/L, 0.01 mg/L and 0.14 mg/L, respectively. Consequently, influent C/N ratio of BNR process was increased by ammonia stripping. Removal efficiency of T-N and T-P was improved about 20% by the process of StripBNR.

알루미늄의 전기분해를 이용한 인 제거 (Phosphorus Removal by Electrolysis with Aluminium Electrodes)

  • 정경훈;최형일;정오진;최칠남;정재경
    • 한국환경과학회지
    • /
    • 제9권1호
    • /
    • pp.95-99
    • /
    • 2000
  • Laboratory experiments were performed to investigate the effects of various factors on the phosphorus removal by electrolysis with aluminium electrodes. The efficiency of phosphorus removal increases with increasing of voltage applied, surface area of electrodes and electrolyte concentration, and decreasing of electrode distance. The phosphorus removal was not affected by the connection number of an electric circuit. The amount of aluminium ion eluted from electrodes according to Faraday's law was 4.47 mg and the A/P mole ratio was 2.14 at the electric current value of 20 mA.

  • PDF

고정상 담체를 충전한 활성슬러지 공정에서 DO농도와 HRT 및 담체 충전율 변화가 질소 제거효율에 미치는 영향 (The Effects of DO, HRT, and Media Packing Ratio on Nitrogen Removal Efficiency in BCM-ASR System)

  • 황규대;한봉석
    • 한국물환경학회지
    • /
    • 제24권6호
    • /
    • pp.659-669
    • /
    • 2008
  • Two sets of four parallel activated sludge reactors (ASRs) maintaining an MLSS of 3000 mg/L were operated to investigate the effect of DO, HRTs and bio-contact media (BCM) packing ratios on the removal efficiency of organic matters and nitrogen. Packing ratios of BCM to BCM-ASR systems 1, 2, 3, and 4 were 0% (suspended growth only), 10%, 15% and 20%, respectively. All systems were operated at an HRT of 4 hr, 6 hr, and 8 hr, respectively; DO concentration was maintained 0.5~1.0 mg/L and 1.5~2.0 mg/L for each HRT condition. In terms of TSS, TCODcr and SCODcr removal efficiency, all systems had a similar level of the removal efficiency under varied HRTs, and DO. But organic removal efficiency of systems with BCM was approximately 3~5% higher than systems without BCM at the same HRT and the DO. About the nitrification efficiency, with high DO (1.5~2.0 mg/L), as HRT (4 hr, 6 hr, 8 hr) or BCM packing ratio increased, the slight increment of nitrification efficiency was observed. However, under the low DO (0.5~1.0 mg/L), increase of BCM packing ratio and HRT resulted in large increase of the nitrification efficiency. At the same HRT and BCM packing ratio, the nitrification efficiency increased greatly with up to 15% as DO increased. When the HRT increased from 4hr to 8hr, the denitrification efficiency slightly increased by 5~10% only, under all DO conditions. Systems with BCM had higher denitrification efficiency, ranged 62.7~91.1% than systems without BCM showed 32.1~65.6%. And the increase in BCM packing ratio from 10% to 20% resulted in about 14~16% denitrification efficiency increment. BCM packing ratio showed great effect on the denitrification. The increase of the DO (from 0.5~1.0 mg/L to 1.5~2.0 mg/L) at the same HRT and BCM packing ratio resulted in slight decrease of denitrification efficiency with up to 7% for systems with BCM. But for systems without BCM, the denitrification efficiency decreased with up to 28%. In all system, the denitrification efficiency had more influence on the TN removal efficiency than nitrification efficiency. So, BCM packing ratio (0%, 10%, 15%, 20%) has greater effect on the TN removal than HRT and DO. The TN removal efficiency increased as packing ratio of BCM increased with up to 45%. As a result, the highest TN removal efficiency was observed 73.7% at the condition showed the highest denitrification efficiency that DO of 0.5~1.0 mg/L, an HRT of 8 hr, and 20% of BCM packing ratio was maintained.