• Title/Summary/Keyword: Removal mechanisms

Search Result 254, Processing Time 0.027 seconds

Adsorption Characteristics of Multi-Metal Ions by Red Mud, Zeolite, Limestone, and Oyster Shell

  • Shin, Woo-Seok;Kang, Ku;Kim, Young-Kee
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • In this study, the performances of various adsorbents-red mud, zeolite, limestone, and oyster shell-were investigated for the adsorption of multi-metal ions ($Cr^{3+}$, $Ni^{2+}$, $Cu^{2+}$, $Zn^{2+}$, $As^{3+}$, $Cd^{2+}$, and $Pb^{2+}$) from aqueous solutions. The result of scanning electron microscopy analyses indicated that the some metal ions were adsorbed onto the surface of the media. Moreover, Fourier transform infrared spectroscopy analysis showed that the Si(Al)-O bond (red mud and zeolite) and C-O bond (limestone and oyster shell) might be involved in heavy metal adsorption. The changes in the pH of the aqueous solutions upon applying adsorbents were investigated and the adsorption kinetics of the metal ions on different adsorbents were simulated by pseudo-first-order and pseudo-second-order models. The sorption process was relatively fast and equilibrium was reached after about 60 min of contact (except for $As^{3+}$). From the maximum capacity of the adsorption kinetic model, the removal of $Pb^{2+}$ and $Cu^{2+}$ were higher than for the other metal ions. Meanwhile, the reaction rate constants ($k_{1,2}$) indicated the slowest sorption in $As^{3+}$. The adsorption mechanisms of heavy metal ions were not only surface adsorption and ion exchange, but also surface precipitation. Based on the metal ions' adsorption efficiencies, red mud was found to be the most efficient of all the tested adsorbents. In addition, impurities in seawater did not lead to a significant decrease in the adsorption performance. It is concluded that red mud is a more economic high-performance alternative than the other tested adsorption materials for applying a removal of multi-metal in seawater.

Degradation of Chlorinated Phenols by Zero Valent Iron and Bimetals of Iron: A Review

  • Gunawardana, Buddhika;Singhal, Naresh;Swedlund, Peter
    • Environmental Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.187-203
    • /
    • 2011
  • Chlorophenols (CPs) are widely used industrial chemicals that have been identified as being toxic to both humans and the environment. Zero valent iron (ZVI) and iron based bimetallic systems have the potential to efficiently dechlorinate CPs. This paper reviews the research conducted in this area over the past decade, with emphasis on the processes and mechanisms for the removal of CPs, as well as the characterization and role of the iron oxides formed on the ZVI surface. The removal of dissolved CPs in iron-water systems occurs via dechlorination, sorption and co-precipitation. Although ZVI has been commonly used for the dechlorination of CPs, its long term reactivity is limited due to surface passivation over time. However, iron based bimetallic systems are an effective alternative for overcoming this limitation. Bimetallic systems prepared by physically mixing ZVI and the catalyst or through reductive deposition of a catalyst onto ZVI have been shown to display superior performance over unmodified ZVI. Nonetheless, the efficiency and rate of hydrodechlorination of CPs by bimetals depend on the type of metal combinations used, properties of the metals and characteristics of the target CP. The presence and formation of various iron oxides can affect the reactivities of ZVI and bimetals. Oxides, such as green rust and magnetite, facilitate the dechlorination of CPs by ZVI and bimetals, while oxide films, such as hematite, maghemite, lepidocrocite and goethite, passivate the iron surface and hinder the dechlorination reaction. Key environmental parameters, such as solution pH, presence of dissolved oxygen and dissolved co-contaminants, exert significant impacts on the rate and extent of CP dechlorination by ZVI and bimetals.

Behavior of THM Formation Pormation Potential for Micro-Pollutants Mixed with SBR Effluent in BAC Treatment (활성오니 처리수중에 함유된 미량유기오염물의 생물학적 활성탄 처리시 THM 생성능의 거동)

  • Han, Myung Ho;Kim, Jeong Mog;Huh, Man Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.84-98
    • /
    • 2000
  • Control of Trihalomethanes(THMs) is a major concern of many water treatment plants. A number of researchers have studied the effectiveness of activated carbon adsorption process in removing THMs or organic halogen compounds. Recently, attention has been paid to the biological activated carbon (BAC) treatment of THM precursors as an alternative to the carbon adsorption treatment because of its effectiveness as well as its low running cost. In this study, changes of THM formation potential(THMFP) and removal of substrates in the SBR effluent were investigated in an attempt to clarify the mechanisms of the decrease/increase of THMFP in the BAC treatment. The increase and decrease of THMFP concentrations were observed in effluents during prolonged operation. When PCP or DBS was feeded as substrate contained in SBR effluent, the THMFPs were easyly removed with TOCs removal. But the case of SBR effluent containing SDS or glycine was introduced, and when microbial growth came to its near steady state, the THMFPs of treated effluents were increased more or less in comparison to those in the influents. Such increases of THMFP coincided with the increase in microbial growth within the activated carbon fiber(ACF) column. In the case of only sucrose was feeded as substrate on ACF colume, THMFP concentrations of effluent were higher than those of influent. The THMFP concentration was significantly increased on inlet part of ACF column, which biomass inhabits abundantly, then they were decreased gradually. These increases mean production of the secondary THM precursors by biological activities, which can be removed by adsorption and biological degradation on ACF column.

  • PDF

A Spatio-Temporal Density Measurement of NO Molecules in Pulsed Barrier Discharge Using Laser Induced Fluorescence (레이져 유기형광법을 이용한 펄스 배리어 방전 공간에서의 NO분자에 대한 시·공간적 밀도변화 측정)

  • Han, Sang-Bo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.160-168
    • /
    • 2010
  • This paper tried to find out NO generation and removal mechanisms in the space of the atmospheric pulsed barrier discharge using laser induced fluorescence method, which is a very effective approach to the measurement of spatio-temporal density of specific molecules. The propagation velocity of the primary streamer reaches about $2.7{\times}10^6$[m/s] and the secondary streamer is produced in the vicinity of positive electrode after the primary streamer finished. In this work, pulse Nd:Yag and Dye lasers are used for generating the specific wavelength of 226[nm], which is possible to excite NO molecules into $A^2{\Sigma}^+{\rightarrow}X^2{\prod}$(0,0) and fluorescence signals as the transition of $A^2{\Sigma}^+{\leftarrow}X^2$(0,2) is measured. For the effective removal of NO molecules in the plasma discharge process, the lower oxygen contents are needed and the influence of secondary streamer for the reduction mechanism of NO molecules is important

Occurrence and control of N-nitrosodimethylamine in water engineering systems

  • Bian, Yongning;Wang, Chuang;Zhu, Guocheng;Ren, Bozhi;Zhang, Peng;Hursthouse, Andrew S.
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.1-16
    • /
    • 2019
  • N-nitrosodimethylamine (NDMA) is a typical nitrogen disinfection by-product, which has posed a potential threat to human health during drinking water disinfection. Because of the well-known effects of mutagenesis, carcinogenesis and teratogenesis, the high detection rate in water engineering systems (such as coagulation, membrane filtration and biological systems), and difficulty to remove, it has received wide concern in the field of water engineering systems. The NDMA is a low molecular weight hydrophilic organic substance, which is difficult to remove. Also, the mechanism for NDMA formation is also recognized to be complex, and many steps still needed to be further evaluated. Therefore, the mechanistic knowledge on NDMA formation potential and their removal processes is of particularly interest. Few papers summarize the occurrence and control of NDMA in water engineering systems. It is for this reason that the content of this paper is particularly important for us to understand and control the amount of NDMA thus reducing the threat of disinfection by-products to drinking water. Four parts including the mechanisms for the NDMA formation potential, the factors affecting the NDMA formation potential, the technologies for removal of NDMA are summarized. Finally, some definite suggestions are given.

Evaluation on the suspended solids and heavy metals removal mechanisms in bioretention systems

  • Geronimo, Franz Kevin F.;Maniquiz-Redillas, Marla C.;Hong, Jungsun;Kim, Lee-Hyung
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.91-97
    • /
    • 2019
  • Application of bioretention systems in Korea is highly considered due to its minimal space requirements, appropriateness as small landscape areas and good pollutant removal and peak hydraulic flow reduction efficiency. In this study, the efficiency of two lab-scale bioretention types having different physical properties, media configuration and planted with different shrubs and perennials was investigated in reducing heavy metal pollutants in stormwater runoff. Type A bioretention systems were planted with shrubs whereas type B were planted with perennials. Chrysanthemum zawadskii var. latilobum (A-CL) and Aquilegia flabellata var. pumila (A-AP) respectively were planted in each type A bioretention reactors while Rhododendron indicum linnaeus (B-RL) and Spiraea japonica (B-SJ), respectively were planted in each type B bioretention reactors. Results revealed that the four lab-scale bioretention reactors significantly reduced the influent total suspended load by about 89 to 94% (p<0.01). Type B-RL and B-SJ reactors reduced soluble Cr, Cu, Zn, and Pb by 28 to 45% that were 15 to 35% greater than the soluble metal reduction of type A-CL and A-AP reactors, respectively. Among the pollutants, total Cr attained the greatest discharged fraction of 0.52-0.81. Excluding the effect of soil media, total Pb attained the greatest retention fraction in the bioretention systems amounting to 0.15-0.34. Considering the least discharge fraction of heavy metal in the bioretention system, it was observed that the bioretention systems achieved effectual reduction in terms of total Cu, Zn and Pb. These findings were associated with the poor adsorption capacity of the soil used in each bioretention system. The results of this study may be used for estimating the maintenance requirements of bioretention systems.

A Microscopic Study on Treatment Mechanism of Acid Mine Drainage by Porous Zeolite-slag Ceramics Packed in a Column Reactor System (컬럼반응조 내 충진된 다공성 zeolite-slag 세라믹에 의한 산성광산배수의 처리기작에 대한 미세분석 연구)

  • Yim, Soo-Bin
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.13-26
    • /
    • 2018
  • This research was conducted to elucidate the removal mechanism of heavy metals and sulfate ion from acid mine drainage(AMD) by porous zeolite-slag ceramics (ZS ceramics) packed in a column reactor system. The average removal efficiencies of heavy metals and sulfate ion from AMD by the 1:3(Z:S) porous ZS ceramics in the column reactor under the HRT condition of 24 hours were Al 97.5%, As 98.8%, Cd 86.1%, Cu 96.2%, Fe 99.7%, Mn 64.1%, Pb 97.2%, Zn 66.7%, and $SO_4{^{2-}}$ 76.0% during 121 days of operation time. The XRD analysis showed that the ferric iron from AMD could be removed by adsorption and/or ion-exchange on the porous ZS ceramics. In addition it was known that Al, As, Cu, Mn, and Zn could adsorb or coprecipitate on the surface of Fe precipitates such as schwertmannite, ferrihydrite, or goethite. The EDS analysis revealed that Al, Fe, and Mn, which were of relatively high concentration in the AMD, would be adsorbed and/or ion-exchanged on the porous ZS ceramics and also exhibited that Al, Cu, Fe, Mn, and Zn could be precipitated as the form of metal hydroxide or sulfate and adsorbed or coprecipitated on the surface of Fe precipitates. The microscopic results on the porous ZS ceramics and precipitated sludge in a column reactor system suggested that the heavy metals and sulfate ion from AMD would be eliminated by the multiple mechanisms of coprecipitation, adsorption, ion-exchange as well as precipitation.

RSM-based MOALO optimization and cutting inserts evaluation in dry turning of AISI 4140 steel

  • Hamadi, Billel;Yallese, Mohamed Athmane;Boulanouar, Lakhdar;Nouioua, Mourad;Hammoudi, Abderazek
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.17-33
    • /
    • 2022
  • An experimental study is carried out to investigate the performance of the cutting tool regarding the insert wear, surface roughness, cutting forces, cutting power and material removal rate of three coated carbides GC2015 (TiCN-Al2O3-TiN), GC4215 (Al2O3-Ti(C,N)) and GC1015 (TiN) during the dry turning of AISI4140 steel. For this purpose, a Taguchi design (L9) was adopted for the planning of the experiments, the effects of cutting parameters on the surface roughness (Ra), tangential cutting force (Fz), the cutting power (Pc) and the material removal rate (MRR) were studied using analysis of variance (ANOVA), the response surface methodology (RSM) was used for mathematical modeling, with which linear mathematical models were developed for forecasting of Ra, Fz, Pc and MRR as a function of cutting parameters (Vc, f, and ap). Then, Multi-Objective Ant Lion Optimizer (MOALO) has been implemented for multi-objective optimization which allows manufacturers to enhance the production performances of the machined parts. Furthermore, in order to characterize and quantify the flank wear of the tested tools, some machining experiments were performed for 5 minutes of turning under a depth of 0.5 mm, a feed rate of 0.08 mm/rev, and a cutting speed of 350 m/min. The wear results led to a ratio (VB-GC4215/VB-GC2015) of 2.03 and (VB-GC1015/VB-GC2015) of 4.43, thus demonstrating the efficiency of the cutting insert GC2015. Moreover, SEM analysis shows the main wear mechanisms represented by abrasion, adhesion and chipping.

Thermal-hydraulic phenomena and heat removal performance of a passive containment cooling system according to exit loss coefficient

  • Sun Taek Lim;Koung Moon Kim;Jun-young Kang;Taewan Kim;Dong-Wook Jerng;Ho Seon Ahn
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4077-4086
    • /
    • 2024
  • The natural circulation system has been widely studied for use in various applications because of its inherent advantage. However, it has a key weakness called flow instability that makes the system unstable. Through massive previous research, the mechanisms of flow instability were analyzed, but there was an ambiguous aspect related to the effect of experimental parameters on the phenomenon. Particularly, there has been no report on the heat transfer performance of the system when flow instability phenomena were present. In this study, thermal-hydraulic phenomena of a two-phase natural circulation system that functions as a passive containment cooling system (PCCS) was investigated according to experimental parameters, namely, the temperature boundary (120-158 ℃) and exit loss coefficient (0-34.5) under atmospheric pressure conditions. The experimental results showed five different flow types in the loop. The flow modes that occurred by the interaction between flashing and boiling were classified by referring to the mass flow rate, void fraction, and visualization data. The system was more unstable when the temperature boundary conditions increased, but it was more stable when the exit loss coefficient increased. These results have only been confirmed in our research. The reason for the results is that the flow conditions are located on the boundary between Density Wave Oscillation I and the stable flow region, and that boundary does not have clear criteria. In addition, comparing the heat transfer performance of a system by heat rate can confirm the effect of flow instability on the thermal performance of the passive cooling system. As a result, the high exit loss coefficient stabilizes the system better than the low case and has similar heat removal performance.

Simulation of Various Baffle Types in a Constructed Wetland Sedimentation Tank using CFD (CFD를 이용한 Hybrid 인공습지의 초기침강지 저류판 구조 모의)

  • Noh, Taegyun;Jeon, Jechan;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.324-329
    • /
    • 2016
  • Constructed wetlands are widely applied in urban and rural areas for various purposes such as pollutants reduction, acquisition of eco-spaces and habitats, flooding reduction, acquisition of water resources and environmental education. Since the design of constructed wetlands utilizes ecosystems, special consideration must be given to ecological mechanisms, environmental mechanisms and hydrological mechanisms. To ensure the sustainable functionality of constructed wetlands, it is necessary to achieve stable flow rate and velocity, and remove sediments to ensure sufficient space for detention. To enhance the efficiency of constructed wetland sedimentation basins, this study determined the optimal position for baffle installation, and applied Computational Fluid Dynamics (CFD) to the cross-sectional design of wetlands. CFD analysis revealed that the decrease in flow velocity with baffle installation enhanced the efficiency of sedimentation of particulate matters. Vertical baffles had higher sedimentation efficiency than those with an inclined angle. When vertical baffles were installed in the sedimentation basin of a hybrid constructed wetland to reduce non-point source pollutants in urban areas, the average flow velocity within the basin decreased by 10~30%, while the sedimentation efficiency improved by 1.3~1.5 times. The application of CFD to constructed wetlands is expected to improve the cost efficiency of designing hybrid constructed wetlands with high removal efficiency.