• Title/Summary/Keyword: Removal and recovery

Search Result 515, Processing Time 0.025 seconds

A Proposal of Sequencing the Combined Processes for Resources Recovery and Nitrogen Removal from Piggery Waste (슬러리형 돈사폐수에서 자원회수와 질소제거를 위한 순차적 결합공정 제안)

  • Hwang, In-Su;Min, Kyung-Sok;Bae, Jin-Yeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.61-66
    • /
    • 2006
  • The combined ADEPT(Anaerobic Digestion Elutriated Phased Treatment)-SHARON(Single reactor system for High Ammonium Removal Over nitrite)-ANAMMOX(Anaerobic ammonium oxidation) processes were operated for resources recovery and nitrogen removal from slurry-type piggery waste. The ADEPT process operated at an acidogenic loading rates of 3.95 gSCOD/L-day, the SCOD elutriation rate and acid production rate were 5.3 gSCOD/L-day and 3.3 gVFAs(as COD)/L-day, respectively. VS reduction and SCOD reduction by the hydrolysis were 13% and 0.19 $gSCOD_{prod.}/gVS_{feeding}$, respcetively. Also, the acid production rate was 0.80 $gVFAs/gSCOD_{prod}$. In methanogenic reactor, the gas production rate and methane content were 2.8 L/day($0.3m^3CH_4/kgCOD_{removal}@STP$) and 77%, respectively. With these operating condition, the removals of nitrogen and phosphorus were 94.1% as $NH_4-N$(86.5% as TKN) and 87.3% as T-P respectively.

Nanoporous carbon synthesized from grass for removal and recovery of hexavalent chromium

  • Pathan, Shahin A.;Pandita, Nancy S.
    • Carbon letters
    • /
    • v.20
    • /
    • pp.10-18
    • /
    • 2016
  • Nanoporous carbon structures were synthesized by pyrolysis of grass as carbon precursor. The synthesized carbon has high surface area and pore volume. The carbon products were acid functionalized and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer–Emmett–Teller, transmission electron microscopy, and Energy Dispersive X-ray microanalysis. Acid functionalized nanoporous carbon was explored for use in removal of toxic Cr(VI) ions from aqueous media. An adsorption study was done as a function of initial concentration, pH, contact time, temperature, and interfering ions. The experimental equilibrium data fits well to Langmuir isotherm model with maximum monolayer adsorption capacity of 35.335 mg/g. The results indicated that removal obeys a pseudo-second-order kinetic model, and that equilibrium was reached in 10 min. A desorption study was done using NaOH. The results of the present study imply that acid functionalized nanoporous carbon synthesized from grass is an efficient, renewable, cost-effective adsorbent material for removal of hexavalent chromium due to its faster removal rate and reusability.

Effects of pH, molar ratios and pre-treatment on phosphorus recovery through struvite crystallization from effluent of anaerobically digested swine wastewater

  • Kim, Daegi;Min, Kyung Jin;Lee, Kwanyong;Yu, Min Sung;Park, Ki Young
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.12-18
    • /
    • 2017
  • Struvite precipitation has been proven to be an effective method in removing and recovering ammonia nitrogen (N) and phosphate phosphorus (P) from wastewater. In this study, effects of pH, molar ratios and pre-treatment of effluent of anaerobically digested swine wastewater were investigated to improve struvite crystallization. The magnesium : ammonium : phosphate ratio of 1.2 : 1.0 : 1.0 was found to be optimal, yet the molar ratio in the wastewater was 1 : 74.9 : 1.8. From the analysis, the optimum pH was between 8.0 and 9.0 for maximal phosphate P release and from 8.0 to 10.0 for maximal ammonia N and phosphate P removal from real wastewater. Analysis from Visual MINTEQ predicted the pH range of 7-11 for ammonia N and phosphate P removal and recovery as struvite. For pre-treatment, microwave pre-treatment was ineffective for phosphate P release but ultrasound pre-treatment showed up to 77.4% phosphate P release at 1,000 kJ/L of energy dose. Precipitates analysis showed that phosphorus and magnesium in the collected precipitate had almost same values as theoretical values, but the ammonia content was less than the theoretical value.

A Study on the Recovery of the Valuable Metals from VRDS Spent Catalyst (VRDS 폐촉매로부터 유가금속 회수 연구)

  • 장희동;이희선;박형규;이후인;김준수
    • Resources Recycling
    • /
    • v.4 no.3
    • /
    • pp.19-25
    • /
    • 1995
  • A Study on the recovery of the valuable metals(Vanadium Molybdenium) was carried out using spent catalysts originated from desulfurizing process of oil refinery. Experiments consisted of pre-roasting for Sulfur and Carbon removal, soda roasting and leaching for the extraction of valuable metals, and selective precipitation of Vanadium and Molybdenium. Effects of temperature and time in roasting for Sulfur removal, of $Na_2CO_3$ concentrations in soda roasting, and of pulp density, temperature and time in leaching were investigated for the recovery of Vanadium and Molybdenium. A optimum condition having over 85% in yield of Vanadium and Molybdenium was found. In the selective precipitation, more than 98% of Vanadium and Molybdenium were obtained by the variation of pH and concentration of additives.

  • PDF

One-Step Purification of Melittin Derived from Apis mellifera Bee Venom

  • Teoh, Angela Ching Ling;Ryu, Kyoung-Hwa;Lee, Eun Gyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.84-91
    • /
    • 2017
  • The concern over the use of melittin in honey bee venom due to its adverse reaction caused by allergens such as phospholipase A2 ($PLA_2$) and hyaluronidase (HYA) has been an obstacle towards its usage. We developed a novel single-step method for melittin purification and the removal of $PLA_2$ and HYA. This study explores the influence of pH, buffer compositions, salt concentration, and types of cation-exchange chromatography resins on the recovery of melittin and the removal of both HYA and $PLA_2$. Melittin was readily purified with a strong cation-exchange resin at pH 6.0 with sodium phosphate buffer. It resulted in a recovery yield of melittin up to 93% (5.87 mg from a total of 6.32 mg of initial melittin in crude bee venom), which is higher than any previously reported studies on melittin purification. $PLA_2$ (99%) and HYA (96%) were also successfully removed. Our study generates a single-step purification method for melittin with a high removal rate of $PLA_2$ and HYA, enabling melittin to be fully utilized for its therapeutic purposes.

Removal/Recovery of Heavy Metals Using Biopolymer (생물고분자를 이용한 중금속 제거/회수에 관한 연구)

  • 안대희;정윤철
    • KSBB Journal
    • /
    • v.8 no.4
    • /
    • pp.336-340
    • /
    • 1993
  • Zoogloea ramigera 115, well known type of bacteria to produce slime in sewage plants, was selected for biopolymer production. The extracted biopolymer showed high uptake capacity of metals such as cadmium and zinc. Especially the fermentor broth itself showed high adsorption of metal and could be used a biosorbent without an additional separation process. Biopolymer was immobilized into beads of calcium alginate and used in a packed bed reactor for the purpose of valued metals recovery. The biopolymer showed high removal efficiencies of 80% or greater for Cu, Cd, Mn and Zn, and high stability in sorption-desorption-resorption experiments. The immobilized biopolymer systems were found to be comparable to other metal removal systems such as ion exchange resins and to be of potential industrial application value.

  • PDF

A Study on the Decompressed Ammonia Stripping from Ammonia Contained Wastewater (폐수의 감압 암모니아 탈기에 관한 연구)

  • 신대윤;오유경
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.93-99
    • /
    • 2001
  • This study aims at finding out pertinent reaction conditions for treating high concentration ammonia contained in N-chemical factory wastewater with decompressed ammonia stripping method that was designed. And it also tries to investigate adsorption capability of removed ammonia to soil. The results from experiments are as follows ; 1. The removal rate of N $H_3$-N of synthetic wastewater was under 85% at pH 10 with decompressed ammonia stripping method. The reaction time in pressure 360 mmHg at pH 11 and 12 was shorter than in 460 mmHg, and the removal rate of N $H_3$-N with decompressed ammonia stripping method at 9$0^{\circ}C$ was 11~15% higher than air stripping 2. The optimum conditions for decompressed ammonia stripping with synthetic sample were shown as pH 12, temperature 9$0^{\circ}C$, internal reaction pressure 460 mmHg and reaction time 50 minutes. These conditions were applied to treat the wastewater containing organic-N 290.5mg/$\ell$, N $H_3$-N 168.9mg/$\ell$, N $O_2$-N 23.2mg/$\ell$, N $O_3$-N 252.4mg/$\ell$, T-N 735mg/$\ell$. Organic-N turned out to be removed 60%, the removal rate of N $H_3$-N IS 94%, T-N is 50%. But N $O_2$-N and N $O_3$-N were increased with 7.8% and 14.9% respectively. 3. The CO $D_{Sr}$ removal rate in decompressed ammonia stripping reaction was 42% and S $O_4$$^{2-}$ was removed 8.2%. It was turned out caused with higher pH and thermolysis. 4. In soil adsorption of ammonia desorbed from the decompressed stripping process of wastewater, the recovery rate was 76% in wet soil.

  • PDF

Considerations to design high-pressure membrane system to produce high quality potable water with lower organic matter concentration (유기물 농도가 낮은 고품질 정수 생산을 위한 고압막여과 공정 설계 시 고려사항)

  • Jeon, Jongmin;Kim, Seong-Su;Seo, Inseok;Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.473-480
    • /
    • 2020
  • High-pressure membrane system like nanofiltration(NF) and reverse osmosis(RO) was investigated as a part of water treatment processes to produce high quality potable water with low organic matter concentration through membrane module tests and design simulation. River water and sand filtration permeate in Busan D water treatment plant were selected as feed water, and NE4040-90 and RE4040-Fen(Toray Chemical Korea) were used as NF and RO membranes, respectively. Total organic carbon(TOC) concentrations of NF and RO permeates were mostly below 0.5 mg/l and the average TOC removal rates of NF and RO membranes were 93.99% and 94.28%, respectively, which means NF used in this study is competitive with RO in terms of organic matter removal ability. Different from ions rejection tendency, the TOC removal rate increases at higher recovery rates, which is because the portion of higher molecular weight materials in the concentrated raw water with increasing recovery rate increases. Discharge of NF/RO concentrates to rivers may not be acceptable because the increased TDS concentration of the concentrates can harm the river eco-system. Thus, the idea of using NF/RO concentrate as the raw water for industrial water production was introduced. The design simulation results with feed water and membranes used in this work reveal that the raw water guideline can be satisfied if the recovery rate of NF/RO system is designed below 80%.

Trends of phosphorus recovery technology from sewage sludge ash by wet chemical method (습식 화학적 방법에 의한 하수 슬러지 소각재에서의 인 회수 기술동향)

  • Lee, Min-Su;Kim, Dong-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.131-143
    • /
    • 2018
  • Phosphorus (P) is a limited, essential, and irreplaceable nutrient for the biological activity of all the living organisms. Sewage sludge ash (SSA) is one of the most important secondary P resources due to its high P content. The SSA has been intensively investigated to recover P by wet chemicals (acid or alkali). Even though $H_2SO_4$ was mainly used to extract P because of its low cost and accessibility, the formation of $CaSO_4$ (gypsum) hinders its use. Heavy metals in the SSA also cause a significant problem in P recovery since fertilizer needs to meet government standards for human health. Therefore, P recovery process with selective heavy metal removal needs to be developed. In this paper some of the most advanced P recovery processes have been introduced and discussed their technical characteristics. The results showed that further research is needed to identify the chemical mechanisms of P transformation in the recovery process and to increase P recovery efficiency and the yields.