지형지물은 각각의 특징적 요인을 내포하고 있다. 이 특징적 요인들은, 공간해상도에 따라 정도의 차이가 있겠지만, 수집된 위성영상에도 반영된다. 이러한 요인들 중에서는 영상분류에 활용될 경우 영상 분류의 정확도를 높혀주고, 때로는 이것이 거의 물체인식의 수준까지 기여할 수 있는 것들이 있다. 이 연구에서는 텍스춰 및 지형지물의 배열에 있어서 특징적 현상을 보이는 비닐하우스를 대상으로 spatial auto-corelation 개념을 기반으로 자동적으로 이를 인지하는 방법을 개발하였다. 사용된 알고리즘은 디지타이징과 같은 사람의 직접적인 개입이 없이 자동화된 방법으로 비닐하우스의 특정한 패턴이 반복적으로 나타나는 것을 감지할 수 있도록 개발되었다. 패틴의 인식에 더하여 비닐하우스의 기하학적 모양을 고려하는 방법도 도입하였다. 그럼으로써 비닐하우스의 추출에 단순히 화소 단위의 분석이 아닌 보다 객체지향적인 방법으로 비닐하우스를 추출하도록 하였다. 개발된 방법을 제주지역의 IKONOS에 적용시켜 본 결과 연구대상지역내의 비닐하우스가 매우 정확하게 적출되었다.
본 연구는 방대한 크기 원격 탐사 영상 자료의 효율적인 분석을 위한 RAG (Region Adjancency Graph) 기반 영상 분할 기법을 제안하고 있다. 제안된 알고리즘은 계산의 효율성을 위하여 CN-chain 연결과 저장 기억의 효율성을 위하여 sliding 다중 창을 사용한다. RAG에 의한 지역 합병은 최선의 결합을 위한 edge을 발견과 합병에 따른 graph의 갱신의 과정이다. CN-chain 연결법은 가장 유사한 인접 지역의 연결을 형성하면서 최선의 edge를 발견하여 합병을 해 나가는 과정으로 영상 자료 크기의 증가에 따라 단지 증가 배수만큼만 분석 시간을 증가시킨다. 합병에 의해 변하는 RAG의 효율적인 갱신을 위하여 RNV(Regional Neighbor Vector)를 사용하였다. 방대한 크기 자료 분석은 막대한 기억 용량의 시스템을 필요로 한다. 제안된 수평적인 구조의 sliding 다중 창 작업은 필요한 기억 용량을 현저히 감소시켜 가능한 분석 자료의 크기를 증대시켰을 뿐 아니라 계산 시간의 감소를 초래하였다. 본 연구는 simulation 자료를 사용하여 광범위하게 제안된 알고리즘의 성능을 실험하였으며 실험 결과는 알고리즘의 효율성을 입증하였다.
본 연구는 원격 탐사의 영상 처리에서 영상 분할의 상위 수준으로 응집 계층 clustering의 dendrogram을 통한 무감독 영상 분류를 제안한다. 제안된 알고리즘은 분광 영역에서 정의된 RAG (Regional Agency Graph)와 min-heap 자료 구조를 이용하여 MCSNP (Mutual Closest Spectral Neighbor Pair)의 집합을 검색하면서 합병을 수행하는 계층 clustering 방법이다. 계산 시간과 저장 기억의 사용에 대한 효율을 증가시키기 위해 분광적 인접성을 정의하는 분광 공간(spectral space)내의 다중 창을 사용하였고 RNV (Region Neighbor Vector)을 이용하여 합병에 의하여 변하는 RAG 갱신하였고 적정한 단계 수가 주어진다면 제안된 알고리즘은 집단 합병의 계층적 관계를 쉽게 해석 할 수 있는 dendrogram을 생성한다. 본 연구는 simulation 자료를 사용하여 광범위하게 제안된 알고리즘에 대한 평가 실험을 수행 하였으며 실험 결과는 알고리즘의 효율성을 입증하였다. 또한 한반도에서 관측된 방대한 크기의 QuickBird 영상의 적용 결과는 제안된 알고리즘이 무감독 영상 분류를 위한 강력한 수단임을 보여준다.
원격탐사는 상대적으로 적은 비용으로 넓은 지역에 대해 최신의 정보를 광범위하게 제공하며 지리정보의 갱신 및 도시변화 관찰에 있어 전통적인 방법(실측, 사진측량 등)에 비해 커다란 장점을 지니고 있으나, 현재까지는 공간 해상도의 한계로 인해 제한된 분야에서만 활용되어 왔으나 공간해상도 1m급의 위성영상이 상용화되고 있는 현 시점에서 위성영상의 활용방법에 대한 연구가 매우 시급하다 할 것이다. 본 연구의 목적은 다시기 위성영상을 이용해 도시지역의 성장변화를 모니터링 할 수 있는 방법을 고찰하는 것이다. 즉, 특정년도의 영상에서 추출하고자 하는 특정지표요소의 분광특성을 이용하여 개개 지표요소가 픽셀에서 차지하는 비율을 SMA알고리즘을 적용하여 개개 지표요소의 분류영상을 생성하여, 도시지역을 추출하고, 이 방법을 다시기 영상에 적용하여 변화가 일어난 지역을 추출하는 것이다. 이러한 방법으로 도시지역의 성장변화를 관찰하는 알고리즘 연구와 도시성장변화를 모니터링 하는 연구에 원격탐사자료의 활용가능성을 제시하고자 한다.
Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict streamflow and flash floods. Previously, neural networks were used to develop a Quantitative Precipitation Forecasting (QPF) model that highly improved forecasting skill at specific locations in Pennsylvania, using both Numerical Weather Prediction (NWP) output and rainfall and radiosonde data. The objective of this study was to improve an existing artificial neural network model and incorporate the evolving structure and frequency of intense weather systems in the mid-Atlantic region of the United States for improved flood forecasting. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as life time, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. The new Quantitative Flood Forecasting (QFF) model was applied to predict streamflow peaks with lead-times of 18 and 24 hours over a five year period in 4 watersheds on the leeward side of the Appalachian mountains in the mid-Atlantic region. Threat scores consistently above .6 and close to 0.8 ∼ 0.9 were obtained fur 18 hour lead-time forecasts, and skill scores of at least 4% and up to 6% were attained for the 24 hour lead-time forecasts. This work demonstrates that multisensor data cast into an expert information system such as neural networks, if built upon scientific understanding of regional hydrometeorology, can lead to significant gains in the forecast skill of extreme rainfall and associated floods. In particular, this study validates our hypothesis that accurate and extended flood forecast lead-times can be attained by taking into consideration the synoptic evolution of atmospheric conditions extracted from the analysis of large-area remotely sensed imagery While physically-based numerical weather prediction and river routing models cannot accurately depict complex natural non-linear processes, and thus have difficulty in simulating extreme events such as heavy rainfall and floods, data-driven approaches should be viewed as a strong alternative in operational hydrology. This is especially more pertinent at a time when the diversity of sensors in satellites and ground-based operational weather monitoring systems provide large volumes of data on a real-time basis.
지표면에 대한 다양한 정보를 제공해 주는 원격탐사기법은 수 십년 동안 우리의 환경을 관찰하고 이해하는데 중요한 역할을 해왔다. 이러한 원격탐사 자료를 이용하는데 다양한 디지털 영상처리기법이 도입되어 자료에서 관찰되는 여러 가지 특성을 모형화하고 처리하는데 매우 유용하게 활용되어져 왔다. 화소들 간의 공간적 관계를 고려하는 Markov Random Field (MRF) 모형은 텍스처 모델링이나 영상분할 및 분류와 같은 여러 분야에서 많이 이용되는 모형으로 이것에 기초한 다양한 알고리즘이 발표되었다. 보통 원격탐사 자료는 그 크기가 매우 크고 시간적 간격을 두고 변화를 관측해 가는 경우에는 분석해야할 자료의 양이 매우 방대하다. 이러한 자료를 처리하는데 걸리는 시간은 처리해야할 자료의 양과는 비선형적 관계에 있다. 본 논문에서는 MRF를 이용하여 원격탐사 자료를 처리할 때 걸리는 시간을 단축하기 위한 방법론이 연구되었다. 이를 위해 논리적 구조로 영상을 피라미드형태로 감소하는 크기로 분석하는 multiresolution 구조가 고려되었는데 이는 연상의 거시적 특징과 미세한 특징을 효율적으로 분석할 수 있는 방법을 제공해 준다. 영상의 크기가 커질수록 파라미터 추정 또한 복잡하고 많은 시간을 요하게 된다. 본 논문에서는 이를 위해 Bayesian 방법을 이용하여 원격탐사 영상과 같은 크기가 큰 영상의 MRF 모형의 파라미터를 효율적으로 추정할 수 있는 방법에 제안되어 있다.
도시녹지는 열섬현상을 감소시키고 여가나 휴식 공간으로 활용되는 등 도시민의 삶의 질을 향상시키는 중요한 역할을 하는 도시 기반시설이다. 그러나 양적인 개발효율에 치중한 관행으로 도시녹지의 체계적인 관리가 미흡했던 것이 사실이다. 녹지총량제와 같은 보존을 위한 제도적 틀은 갖추어 가고 있지만, 정확한 녹지량을 산정하는 기술적 측면은 상대적으로 보완할 여지가 크다. 최근 들어 원격탐사를 이용한 녹지나 도시 기반시설의 정량적 탐지를 수행한 다양한 연구들이 수행 되었다. 그러나 기존 연구들이 활용한 자료의 공간 해상도를 고려하였을 때 도시 내에 무수히 존재하는 소규모 녹지공간의 탐지가 효과적으로 되었다고 보기 힘들다. 이러한 맥락에서 본 연구에서는 초분광 영상(CASI-1500)을 활용한 도시 내 소규모 녹지에 대한 정량적 탐지를 수행하였다. 이를 위해 식생지수를 산출하여 소규모 녹지공간의 탐지 여부를 검토한 뒤, ISODATA와 SAM 기법을 적용한 감독분류, 무감독분류를 통해서 각 방법들이 소규모 녹지공간 탐지에 적절한지 비교하였다. 미분류, 불투수성, 녹지로 의심되는 영역, 녹지의 4개의 피복으로 분류하여 SAM 기법에 사용된 참조스펙트럼의 차이를 비교하였다.
원격탐사 자료를 활용한 변화탐지 기법은 재난/재해, 국토모니터링 등의 다양한 분야에서 활용가능하다. 그러나, 고해상도 위성영상을 활용하여 무감독 변화탐지를 수행할 경우에는, 기복변위 등에 의한 기하학적인 오차와 영상의 노이즈 정보에 의하여 미변화지역들이 변화지역으로 오탐지될 수 있는 문제점을 지닌다. 따라서 본 연구에서는 대표적인 변화탐지 기법인 IR-MAD 기법을 활용하여 고해상도 위성영상에 대한 객체 기반의 변화탐지를 수행하였다. 특히, 교차융합기법으로 부가적인 자료를 생성하여 객체 기반의 변화탐지 정확도를 향상시키고자 하였다. KOMPSAT-2 위성영상을 활용한 실험을 수행한 결과, 화소기반의 IR-MAD 기법과 비교하여 객체 기반의 IR-MAD 기법이 높은 변화탐지 정확도를 보이는 것을 확인하였다. 또한, 교차융합영상을 활용하였을 경우가 원 다시기 영상만을 사용하였을 때보다 높은 변화탐지 정확도를 보였다. 이를 통해, 객체 기반의 IR-MAD 기법이 고해상도 위성영상을 활용한 국토의 변화탐지를 효과적으로 수행할 수 있음을 실험적으로 증명하였다.
작물의 스트레스를 탐지하는 것은 생산량 감소를 평가하는데 매우 중요하다. 광화학 반사 지수 (PRI)는 LUE의 원격 감지 지표로서 개발되었으며, 많은 연구자들에 의해 식생의 스트레스 탐지에 효과적으로 사용할 수 있음이 입증되었다. 그러나 원격탐사 영상에 기반한 PRI를 이용한 연구는 매우 드물다. 낮은 분광해상도로 인하여 드론 및 위성영상 기반의 PRI 모니터링이 어렵기 때문이다. 본 연구에서는 다중분광 센서 기반의 PRI를 산정하기 위하여 인접한 밴드를 이용한 융합 방법을 제안하였다. 제안한 기법을 초분광 및 다중분광 영상에 적용한 결과 산출된 PRI는 79%의 설명력을 나타내었으며, 지상고정형 센서의 관측값과도 유사한 변동 특성을 나타내었다. 따라서 밴드 융합에 의한 PRI는 작물 스트레스 평가에 적용이 가능할 것으로 판단된다.
This paper makes an effort to compare the recently evolved soft classification method based on Linear Spectral Mixture Modeling (LSMM) with the traditional hard classification methods based on Iterative Self-Organizing Data Analysis (ISODATA) and Maximum Likelihood Classification (MLC) algorithms in order to achieve appropriate results for mapping, monitoring and preserving valuable coastal wetland ecosystems of southern India using Indian Remote Sensing Satellite (IRS) 1C/1D LISS-III and Landsat-5 Thematic Mapper image data. ISODATA and MLC methods were attempted on these satellite image data to produce maps of 5, 10, 15 and 20 wetland classes for each of three contrast coastal wetland sites, Pitchavaram, Vedaranniyam and Rameswaram. The accuracy of the derived classes was assessed with the simplest descriptive statistic technique called overall accuracy and a discrete multivariate technique called KAPPA accuracy. ISODATA classification resulted in maps with poor accuracy compared to MLC classification that produced maps with improved accuracy. However, there was a systematic decrease in overall accuracy and KAPPA accuracy, when more number of classes was derived from IRS-1C/1D and Landsat-5 TM imagery by ISODATA and MLC. There were two principal factors for the decreased classification accuracy, namely spectral overlapping/confusion and inadequate spatial resolution of the sensors. Compared to the former, the limited instantaneous field of view (IFOV) of these sensors caused occurrence of number of mixture pixels (mixels) in the image and its effect on the classification process was a major problem to deriving accurate wetland cover types, in spite of the increasing spatial resolution of new generation Earth Observation Sensors (EOS). In order to improve the classification accuracy, a soft classification method based on Linear Spectral Mixture Modeling (LSMM) was described to calculate the spectral mixture and classify IRS-1C/1D LISS-III and Landsat-5 TM Imagery. This method considered number of reflectance end-members that form the scene spectra, followed by the determination of their nature and finally the decomposition of the spectra into their endmembers. To evaluate the LSMM areal estimates, resulted fractional end-members were compared with normalized difference vegetation index (NDVI), ground truth data, as well as those estimates derived from the traditional hard classifier (MLC). The findings revealed that NDVI values and vegetation fractions were positively correlated ($r^2$= 0.96, 0.95 and 0.92 for Rameswaram, Vedaranniyam and Pitchavaram respectively) and NDVI and soil fraction values were negatively correlated ($r^2$ =0.53, 0.39 and 0.13), indicating the reliability of the sub-pixel classification. Comparing with ground truth data, the precision of LSMM for deriving moisture fraction was 92% and 96% for soil fraction. The LSMM in general would seem well suited to locating small wetland habitats which occurred as sub-pixel inclusions, and to representing continuous gradations between different habitat types.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.