• Title/Summary/Keyword: Remotely sensed imagery

Search Result 104, Processing Time 0.023 seconds

NDVI 시계열 시리즈에 의한 한반도 지표면 변화 추적

  • Lee, Sang-Hun
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.97-100
    • /
    • 2009
  • The surface parameters associated with the land are usually dependent on the climate, and many physical processes that are displayed in the image sensed from the land then exhibit temporal variation with seasonal periodicity. An adaptive feedback system proposed in this study reconstructs a sequence of images remotely sensed from the land surface having the physical processes with seasonal periodicity. The harmonic model is used to track seasonal variation through time, and a Gibbs random field (GRF) is used to represent the spatial dependency of digital image processes. In this study, the Normalized Difference Vegetation Index (NDVI) was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula for 1996 and 2000 using a dynamic technique, and the adaptive reconstruction of harmonic model was then applied to the NDVI time series for tracking changes on the ground surface. The results show that the adaptive approach is potentially very effective for continuously monitoring changes on near-real time.

  • PDF

Adaptive Reconstruction of NDVI Image Time Series for Monitoring Vegetation Changes (지표면 식생 변화 감시를 위한 NDVI 영상자료 시계열 시리즈의 적응 재구축)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • Irregular temporal sampling is a common feature of geophysical and biological time series in remote sensing. This study proposes an on-line system for reconstructing observation image series including bad or missing observation that result from mechanical problems or sensing environmental condition. The surface parameters associated with the land are usually dependent on the climate, and many physical processes that are displayed in the image sensed from the land then exhibit temporal variation with seasonal periodicity. An adaptive feedback system proposed in this study reconstructs a sequence of images remotely sensed from the land surface having the physical processes with seasonal periodicity. The harmonic model is used to track seasonal variation through time, and a Gibbs random field (GRF) is used to represent the spatial dependency of digital image processes. In this study, the Normalized Difference Vegetation Index (NDVI) image was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula, and the adaptive reconstruction of harmonic model was then applied to the NDVI time series from 1996 to 2000 for tracking changes on the ground vegetation. The results show that the adaptive approach is potentially very effective for continuously monitoring changes on near-real time.

SPACE-BASED OCEAN SURVEILLANCE AND SUPPORT CAPABILITY

  • Yang Chan-Su
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.253-256
    • /
    • 2005
  • The use of satellite remote sensing in maritime safety and security can aid in the detection of illegal fishing activities and provide more efficient use of limited aircraft or patrol craft resources. In the area of vessel traffic monitoring for commercial vessels, Vessel Traffic Service (VTS) which use the ground-based radar system have some difficulties in detecting moving ships due to the limited detection range. A virtual vessel traffic control system is introduced to contribute to prevent a marine accident such as collision and stranding from happening. Existing VTS has its limit. The virtual vessel traffic control system consists of both data acquisition by satellite remote sensing and a simulation of traffic environment stress based on the satellite data, remotely sensed data. And it could be used to provide timely and detailed information about the marine safety, including the location, speed and direction of ships, and help us operate vessels safely and efficiently. If environmental stress values are simulated for the ship information derived from satellite data, proper actions can be taken to prevent accidents. Since optical sensor has a high spatial resolution, JERS satellite data are used to track ships and extract their information. We present an algorithm of automatic identification of ship size and velocity. This paper lastly introduce the field testing results of ship detection by RADARSAT SAR imagery, and propose a new approach for a Vessel Monitoring System(VMS), including VTS, and SAR combination service.

  • PDF

GEO-LINEAMENT CHARACTERIZATION USING WAVELET APPROACH: A CASE STUDY IN THE UISEUNG CALDERA REGION

  • Kim, Mi-Kyung;Yoo, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.243-246
    • /
    • 2006
  • Wavelet approach is regarded as a useful methodology for geo-environment analysis with respect to spatial objects with periodicity and spatial pattern, compared to autocorrelation analysis, Fourier analysis, variogram analysis and so on. However, there are a few case studies for geo-lineament characterization with the actual geo-based information such as remotely sensed imagery and DEM. In this study, wavelet approach in the Uiseung caldera region are carried out to delineate characterization for geolineament spatial pattern. There are high possibilities of the development of radial lineaments from the centre of round crater due to the eruption of a volcano and the subsidence of a crater. We have grasped the directionality of the whole linear structures of the caldera via rose diagram, and then performed wavelet analysis on the profiles of orthogonal directions for main directions of the lineaments. The result of this study is likely to be used as a fundamental data in order to grasp the outline of caldera structure prior to the close estimation

  • PDF

AUTOMATIC DETECTION OF OIL SPILLS WITH LEVEL SET SEGMENTATION TECHNIQUE FROM REMOTELY SENSED IMAGERY

  • Konstantinos, Karantzalos;Demetre, Argialas
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.126-129
    • /
    • 2006
  • The marine environment is under considerable threat from intentional or accidental oil spills, ballast water discharged, dredging and infilling for coastal development, and uncontrolled sewage and industrial wastewater discharges. Monitoring spills and illegal oil discharges is an important component in ensuring compliance with marine protection legislation and general protection of the coastal environments. For the monitoring task an image processing system is needed that can efficiently perform the detection and the tracking of oil spills and in this direction a significant amount of research work has taken place mainly with the use of radar (SAR) remote sensing data. In this paper the level set image segmentation technique was tested for the detection of oil spills. Level set allow the evolving curve to change topology (break and merge) and therefore boundaries of particularly intricate shapes can be extracted. Experimental results demonstrated that the level set segmentation can be used for the efficient detection and monitoring of oil spills, since the method coped with abrupt shape’s deformations and splits.

  • PDF

Footprint extraction of urban buildings with LIDAR data

  • Kanniah, Kasturi Devi;Gunaratnam, Kasturi;Mohd, Mohd Ibrahim Seeni
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.113-119
    • /
    • 2003
  • Building information is extremely important for many applications within the urban environment. Sufficient techniques and user-friendly tools for information extraction from remotely sensed imagery are urgently needed. This paper presents an automatic and manual approach for extracting footprints of buildings in urban areas from airborne Light Detection and Ranging (LIDAR) data. First a digital surface model (DSM) was generated from the LIDAR point data. Then, objects higher than the ground surface are extracted using the generated DSM. Based on general knowledge on the study area and field visits, buildings were separated from other objects. The automatic technique for extracting the building footprints was based on different window sizes and different values of image add backs, while the manual technique was based on image segmentation. A comparison was then made to see how precise the two techniques are in detecting and extracting building footprints. Finally, the results were compared with manually digitized building reference data to conduct an accuracy assessment and the result shows that LIDAR data provide a better shape characterization of each buildings.

  • PDF

Study on the Effect of Discrepancy of Training Sample Population in Neural Network Classification

  • Lee, Sang-Hoon;Kim, Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.3
    • /
    • pp.155-162
    • /
    • 2002
  • Neural networks have been focused on as a robust classifier for the remotely sensed imagery due to its statistical independency and teaming ability. Also the artificial neural networks have been reported to be more tolerant to noise and missing data. However, unlike the conventional statistical classifiers which use the statistical parameters for the classification, a neural network classifier uses individual training sample in teaming stage. The training performance of a neural network is know to be very sensitive to the discrepancy of the number of the training samples of each class. In this paper, the effect of the population discrepancy of training samples of each class was analyzed with three layered feed forward network. And a method for reducing the effect was proposed and experimented with Landsat TM image. The results showed that the effect of the training sample size discrepancy should be carefully considered for faster and more accurate training of the network. Also, it was found that the proposed method which makes teaming rate as a function of the number of training samples in each class resulted in faster and more accurate training of the network.

A Study on Forest Fire Detection from MODIS Data Using Local Spatial Association Analysis (국지적 공간상관분석을 이용한 MODIS영상에서의 산불탐지에 관한 연구)

  • Byun, Young-Gi;Huh, Yong;Kim, Yong-Min;Yu, Ki-Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.1 s.39
    • /
    • pp.23-29
    • /
    • 2007
  • Spatial outliers in remotely sensed imagery represent observed quantities showing unusual values compared to their neighbor pixel values. There have been various methods to detect the spatial outliers based on spatial autocorrelations in statistics and data mining. These methods may be applied in detecting forest fire pixels in the MODIS imageries from NASA's AQUA satellite. This is because the forest fire detection can be referred to as finding spatial outliers using spatial variation of brightness temperature. In this paper, we propose a new forest fire detection algorithm which is based on local spatial association analysis, and test the proposed algorithm to evaluate its applicability. In order to evaluate the proposed algorithm, the results were compared with the MODIS fire product provided by the NASA MODIS Science Team, which showed the possibility of the proposed algorithm in detecting the fire pixels.

  • PDF

Land Use Feature Extraction and Sprawl Development Prediction from Quickbird Satellite Imagery Using Dempster-Shafer and Land Transformation Model

  • Saharkhiz, Maryam Adel;Pradhan, Biswajeet;Rizeei, Hossein Mojaddadi;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.15-27
    • /
    • 2020
  • Accurate knowledge of land use/land cover (LULC) features and their relative changes over upon the time are essential for sustainable urban management. Urban sprawl growth has been always also a worldwide concern that needs to carefully monitor particularly in a developing country where unplanned building constriction has been expanding at a high rate. Recently, remotely sensed imageries with a very high spatial/spectral resolution and state of the art machine learning approaches sent the urban classification and growth monitoring to a higher level. In this research, we classified the Quickbird satellite imagery by object-based image analysis of Dempster-Shafer (OBIA-DS) for the years of 2002 and 2015 at Karbala-Iraq. The real LULC changes including, residential sprawl expansion, amongst these years, were identified via change detection procedure. In accordance with extracted features of LULC and detected trend of urban pattern, the future LULC dynamic was simulated by using land transformation model (LTM) in geospatial information system (GIS) platform. Both classification and prediction stages were successfully validated using ground control points (GCPs) through accuracy assessment metric of Kappa coefficient that indicated 0.87 and 0.91 for 2002 and 2015 classification as well as 0.79 for prediction part. Detail results revealed a substantial growth in building over fifteen years that mostly replaced by agriculture and orchard field. The prediction scenario of LULC sprawl development for 2030 revealed a substantial decline in green and agriculture land as well as an extensive increment in build-up area especially at the countryside of the city without following the residential pattern standard. The proposed method helps urban decision-makers to identify the detail temporal-spatial growth pattern of highly populated cities like Karbala. Additionally, the results of this study can be considered as a probable future map in order to design enough future social services and amenities for the local inhabitants.

Study on the Building of Digital Terrain Model Using Satellite Remotely Sensed Data and Its Applications (위성 원격탐사 데이타를 이용한 지형표고모델 산출 알고리즘 구축 및 응용)

  • 최윤수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.141-151
    • /
    • 1995
  • In generating DTM as basic data to GIS, the use of existing map is difficult to aquire current data and the method using airphotos needs cost for stereoplotting and ground control surveying. So, the method of DTM generation by satellite imagery is promising because satellite is able to observe wide area at once. In this study the program for SPOT bundle adjustment and image matching based on Coarse to Fine method is developed and various image enhancement algorithm is used for more accurate DTM generation and also evaluation of accuracy was carried out. Further more, orthophoto, a bird's eye-view, contour map producing, net-work analysis and terrain analysis were performed for GIS applications using generated DTM in this study. Generated DTM using SPOT stereo imagery is useful for GIS applications such as automated mapping, facility management, national geographic information system. Moreover developed automatic DTM generation pro-gram is studied, tested and verified more to be applicable to all the area.

  • PDF