• Title/Summary/Keyword: Remotely Operated underwater Vehicles

Search Result 21, Processing Time 0.019 seconds

Disturbance Observer-Based Control for 6-DOF Remotely Operated Underwater Vehicle with Model Uncertainties (모델 불확실성을 갖는 6자유도 원격조종 수중로봇의 외란 관측기 기반 제어)

  • Junsik Kim;Dongchul Lee;Youngjin Choi
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.82-87
    • /
    • 2023
  • This paper proposes a disturbance observer-based control for 6-DOF remotely operated underwater vehicles with model uncertainties. The sum of external disturbance and the forces generated from model parameters except for the inertial matrix of the hydrodynamic model is defined as a lumped disturbance in this paper. Then, the lumped disturbance caused by model uncertainties and the external forces is estimated using the disturbance observer. Fortunately, the disturbance observer is constructed as a linear form because all the elements of the inertial matrix of the hydrodynamic model are constants. To verify the proposed control scheme, we show that the actual lumped disturbance is similar to the estimated lumped disturbance obtained by the disturbance observer. Finally, the position tracking performance in the disturbance environment is confirmed through the comparative study with a traditional inverse dynamics PD controller.

Linear Model Predictive Control of 6-DOF Remotely Operated Underwater Vehicle Using Nonlinear Robust Internal-loop Compensator (비선형 강인 내부루프 보상기를 이용한 6자유도 원격조종 수중로봇의 선형 모델예측 제어)

  • Junsik Kim;Yuna Choi;Dongchul Lee;Youngjin Choi
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • This paper proposes a linear model predictive control of 6-DOF remotely operated underwater vehicles using nonlinear robust internal-loop compensator (NRIC). First, we design a integrator embedded linear model prediction controller for a linear nominal model, and then let the real model follow the values calculated through forward dynamics. This work is carried out through an NRIC and in this process, modeling errors and external disturbance are compensated. This concept is similar to disturbance observer-based control, but it has the difference that H optimality is guaranteed. Finally, tracking results at trajectory containing the velocity discontinuity point and the position tracking performance in the disturbance environment is confirmed through the comparative study with a traditional inverse dynamics PD controller.

A Modelling and Control Method for a Hybrid ROV/AUV for Underwater Exploration

  • Nak Yong, Ko;Jiyoun, Moon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.67-73
    • /
    • 2023
  • As interest in underwater structures and ocean exploration increases, many researchers are proposing methods for modeling and controlling various remotely operated vehicles (ROVs). Recently, hybrid systems composed of an autonomous underwater vehicle and an ROV capable of remote control and autonomous navigation are being developed. In this study we introduce a method that models Ariari-aROV, an ROV consisting of five thrusters, and performs navigation. The proposed ROV can be controlled manually and by autonomous navigation when given a target point. An extended Kalman filter is utilized for sensor measurement correction for more precise navigation. The proposed method is verified through a simulation.

A Basic Study of ROV System Design for Underwater Structure Inspection (수중 구조물 검사를 위한 ROV 시스템 설계 연구)

  • Ryu, Jedoo;Nam, Keonseok;Ha, Kyoungnam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.3
    • /
    • pp.463-471
    • /
    • 2020
  • Recently, various tries to apply ROV (Remotely Operated Vehicle) into underwater are being developed. However, due to underwater environment uniqueness, the additional problem must be taken into account when designing an ROV for the inspection of the underwater structure. This is because a GPS-based information method cannot be applied, and the obtainable image is also dependent on the turbidity. Also, it is necessary to be able to satisfy waterproof and operating speeds in consideration of most practical application environments. This paper describes the design results of the ROV system for underwater structure inspection considering the above problems. The designed system applied INS / DVL for location recognition and was configured to support 3D mapping and stereo camera-based image information using sonar depending on visibility. To satisfy the waterproof, a pressure vessel using a composite material was applied. And over-actuated system using eight thrusters to maintain a stable posture and operating speed was applied also. The designed system was verified by structural analysis and flow analysis also.

Vision-based Sensor Fusion of a Remotely Operated Vehicle for Underwater Structure Diagnostication (수중 구조물 진단용 원격 조종 로봇의 자세 제어를 위한 비전 기반 센서 융합)

  • Lee, Jae-Min;Kim, Gon-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.349-355
    • /
    • 2015
  • Underwater robots generally show better performances for tasks than humans under certain underwater constraints such as. high pressure, limited light, etc. To properly diagnose in an underwater environment using remotely operated underwater vehicles, it is important to keep autonomously its own position and orientation in order to avoid additional control efforts. In this paper, we propose an efficient method to assist in the operation for the various disturbances of a remotely operated vehicle for the diagnosis of underwater structures. The conventional AHRS-based bearing estimation system did not work well due to incorrect measurements caused by the hard-iron effect when the robot is approaching a ferromagnetic structure. To overcome this drawback, we propose a sensor fusion algorithm with the camera and AHRS for estimating the pose of the ROV. However, the image information in the underwater environment is often unreliable and blurred by turbidity or suspended solids. Thus, we suggest an efficient method for fusing the vision sensor and the AHRS with a criterion which is the amount of blur in the image. To evaluate the amount of blur, we adopt two methods: one is the quantification of high frequency components using the power spectrum density analysis of 2D discrete Fourier transformed image, and the other is identifying the blur parameter based on cepstrum analysis. We evaluate the performance of the robustness of the visual odometry and blur estimation methods according to the change of light and distance. We verify that the blur estimation method based on cepstrum analysis shows a better performance through the experiments.

Experimental Study on High Frequency Vibration Transfer Characteristic of Underwater Cylindrical Shell (수중 원통형 쉘 구조물의 고주파 진동 전달특성에 대한 실험적 연구)

  • Jung, Hyung-Gi;Min, Cheon-Hong;Park, Han-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.58-63
    • /
    • 2011
  • Underwater vehicles such as UUVs (Unmanned Underwater Vehicles) and ROVs (Remotely Operated Vehicles) use sonar to detect their underwater environment or other underwater vehicles. The underwater vehicles designed recently have an electrical power system with high rotational speed. This system can generate high frequency vibrations above 10 kHz, and these vibrations can cause bad (negative) effects on the performance of the sonar. In many previous investigations, numerical analyses have been used for high frequency vibration problems. In this study, an experimental analysis was carried out, and a circular cylindrical shell was considered as the hull structure of an underwater vehicle. Frequency transfer functions for the circular cylindrical shell were identified using an experimental vibration analysis in the air and in a fully-submerged condition. We compare the frequency transfer functions in the air and water to obtain hydro-elastic effects. It is found that the dynamic characteristics of the circular cylindrical shell are changed by varying the response position.

A Study on a Power Control System of Observation Equipment for Undersea Resources (해저자원 관측장비를 위한 전력제어시스템 개발)

  • Kim, Yeong-Jin;Jo, Yeong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.427-428
    • /
    • 2008
  • In order to probe such mineral resources, AUVs (Autonomous Underwater Vehicles) have been used instead of ROVs (Remotely-Operated Vehicles) that are not suitable to probe submarine resources distributed over a wide area. However, the power consumption of AUVs needs to be reduced as they are operated by batteries. In controlling the power of underwater vehicles, the efficiency of batteries and their capacity have been heightened. This study aimed at developing a power control system suitable to the prober for submarine mineral resources. As a result, power was reduced as compared to the non-control system and the prober could explore the seabed longer than usual.

  • PDF

Study on the fluid resistance coefficient for control simulation of an underwater vehicle (수중로봇 제어 시뮬레이션을 위한 유체저항계수 연구)

  • Park, Sang-Wook;Kim, Min-Soo;Sohn, Jeong-Hyun;Baek, Woon-Kyung
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.24-29
    • /
    • 2016
  • Remotely operated vehicles or autonomous underwater vehicles have been used for exploiting seabed natural resources. In this study, the autonomous underwater vehicle of hovering type(HAUV) is developed to observe underwater objects in close distance. A dynamic model with six degrees of freedom is established, capturing the motion characteristics of the HAUV. The equations of motion are generated for the dynamic control simulation of the HAUV. The added mass, drag and lift forces are included in the computer model. Computational fluid dynamics simulation is carried out using this computer model. The drag coefficients are produced from the CFD.

A Study on the Structural Design and Analysis of a Deep-sea Unmanned Underwater Vehicle

  • Joung Tae-Hwan;Lee Jae-Hwan;Nho In-Sik;Lee Jong-Moo;Lee Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.3 s.70
    • /
    • pp.7-14
    • /
    • 2006
  • This paper discusses the structural design and analysis of a 6,000 meters depth-rated capable deep-sea unmanned underwater vehicle (UUV) system. The UUV system is currently under development by Maritime and Ocean Engineering Research Institute(MOERI), Korea Ocean Research and Development Institute (KORDI). The UUV system is composed of three vehicles - a Remotely Operated Vehicle (ROV), an Autonomous Underwater Vehicle (AUV) and a Launcher - which include underwater equipment. The dry weight of the system exceeds 3 tons hence it is necessary to carry out the optimal design of structural system to ensure the minimum weight and sufficient space within the frame for the convenient use of the embedded equipments. In this paper, therefore, the structural design and analysis of the ROV and launcher frame system were carried out, using the optimizing process. The cylindrical pressure vessels for the ROV were designed to resist the extreme pressure of 600 bars, based on the finite element analysis. The collapse pressure for the cylindrical pressure vessels was also checked through a theoretical analysis.

Technology Development Trends Analysis and Development Plan of Unmanned Underwater Vehicle (무인 잠수정 연구 개발 동향 분석 및 발전 방안)

  • Lee, Ji Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.233-239
    • /
    • 2019
  • An unmanned underwater vehicle is a major weapon system that allows surveillance and reconnaissance missions in border areas or threatening areas where enemy submarines are present. Unmanned underwater vehicles can be used to explore underwater resources, predict disasters, and survey the topography of the ocean floor in the civilian fields, while in the defense fields, it can be used for anti-submarine reconnaissance and mine countermeasures. In this paper, we first investigate the main classification of unmanned underwater vehicles, and foreign R&D trends are analyzed based on the main classification criteria by weight, such as portable, light, heavy and large-scale unmanned underwater vehicles. Then we examine the trends in the development of domestic unmanned underwater vehicles. Finally, through the analysis of both domestic and foreign unmanned underwater vehicles, we present future development trends of unmanned underwater vehicles in order to set defense goals to counter the anticipated threats and diversified potential environment.