• 제목/요약/키워드: Remote sensor systems

Search Result 252, Processing Time 0.032 seconds

Current Status of Ocean Satellite Remote Sensing Data and Its Distribution (해양의 인공위성 자료 현황과 배포 소개)

  • Yang, Chan-Su
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.51-55
    • /
    • 2007
  • As for satellite programs, the multipurpose satellite 1(KOMPSAT-1) was successfully launched on Dec. 21, 1999 and operated for three years. It is still properly operated even though its life cycle was ended. The development of KOMPSAT-2 (Korea Multipurpose Satellite-2) is near completion and the development of KOMPSAT-3, KOMPSAT-5 and COMS (Communication, Ocean, Meterological Satellite) are proceeding swiftly. In KORDI(Korea Ocean Research and Development Institute), the KOSC (Korea Ocean Satellite Center) construction project is being prepared for acquisition, processing and distribution of sensor data via L-band from GOCI(Geostationary Ocean Color Imager) instrument which is loaded on COMS(Communication, Ocean and Meteorological Satellite); it will be launched in 2000. Ansan(the headquarter of KORDD has been selected for the location of KOSC between 5 proposed sites, because it has the best condition to receive radio wave. The data acquisition system is classified antenna and RF. Antenna is designed to be ${\emptyset}$ 9m cassegrain antenna which has 19.35 $G/T(dB/^{\circ}K)$ at 1.67GHz, RF module, is divided into LNA(Low noise amplifier) and down converter, those are designed to send only horizontal polarization to modem The existing building is re-designed and classified for the KOSC operation concept; computing room, board of electricity, data processing room, operation room Hardware and network facilities have been designed to adapt for efficiency of each functions. The distribution system which is one of the most important systems will be constructed mainly on the internet, and it is also being considered constructing outer data distribution system as a web hosting service for to offering received data to user under an hour.

  • PDF

Automation of urine dipstick test by simultaneous scanning : A pilot study (요 스트립검사 자동화를 위한 동시 비교 스캔 기법 예비 연구)

  • Lee, Sang-Bong;Choi, Seong-Su;Lee, In-Kwang;Han, Jeong-Su;Kim, Wan-Seok;Kim, Wun-Jae;Cha, Eun-Jong;Kim, Kyung-Ah
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.169-175
    • /
    • 2010
  • Urinalysis is an important clinical test to diagnose urinary diseases, and dipstick method with visual inspection is widely applied in practice. Automated optical devices recently developed have disadvantages of long measurement time, big size and heavy weight, accuracy degradation with time, etc. The present study proposed a new computer scanning technique, in which the test strip and the standard chart were simultaneously scanned to remove any environmental artifacts, followed by automated differentiation with the minimum distance algorithm, leading to significant enhancement of accuracy. Experiments demonstrated an accuracy of 100 % in that all test results were identical with the human visual inspection. The present technique only uses a personal computer with scanner and shortens the test time to a great degree. The results are also stored and accumulated for later use which can be transmitted to remote locations through a network, thus could be easily integrated to any ubiquitous health care systems.

Information and communication system for integrated management of water resources building measures (수자원 통합관리를 위한 정보통신시스템 구축방안)

  • Yu, Se-Hwan;Jang, Dong-bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.807-809
    • /
    • 2014
  • Individual dam water management is the comprehensive management of all water-based analyzes, quantity, quality, and comprehensive disaster management as a way to analyze and change. K-water is mainly the four river basins, and multipurpose dams and integrated water management is realized, and such information and communication system for integrated management of water resources is also a user-centered development, dam management, so that you can perform and built electronically be. The information communication system is configured to manage the operation of the control system of the equipment controlling system lower sensor and based on data collected from a field to store information, and to control the remote equipment capabilities. In this paper, the integrated management of water sector bodeung dam Information and Communication System for the best ways to learn about the system's security measures and systems to evaluate for weaknesses.

  • PDF

IoT-Based Automatic Water Quality Monitoring System with Optimized Neural Network

  • Anusha Bamini A M;Chitra R;Saurabh Agarwal;Hyunsung Kim;Punitha Stephan;Thompson Stephan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.46-63
    • /
    • 2024
  • One of the biggest dangers in the globe is water contamination. Water is a necessity for human survival. In most cities, the digging of borewells is restricted. In some cities, the borewell is allowed for only drinking water. Hence, the scarcity of drinking water is a vital issue for industries and villas. Most of the water sources in and around the cities are also polluted, and it will cause significant health issues. Real-time quality observation is necessary to guarantee a secure supply of drinking water. We offer a model of a low-cost system of monitoring real-time water quality using IoT to address this issue. The potential for supporting the real world has expanded with the introduction of IoT and other sensors. Multiple sensors make up the suggested system, which is utilized to identify the physical and chemical features of the water. Various sensors can measure the parameters such as temperature, pH, and turbidity. The core controller can process the values measured by sensors. An Arduino model is implemented in the core controller. The sensor data is forwarded to the cloud database using a WI-FI setup. The observed data will be transferred and stored in a cloud-based database for further processing. It wasn't easy to analyze the water quality every time. Hence, an Optimized Neural Network-based automation system identifies water quality from remote locations. The performance of the feed-forward neural network classifier is further enhanced with a hybrid GA- PSO algorithm. The optimized neural network outperforms water quality prediction applications and yields 91% accuracy. The accuracy of the developed model is increased by 20% because of optimizing network parameters compared to the traditional feed-forward neural network. Significant improvement in precision and recall is also evidenced in the proposed work.

Bundle Block Adjustment of Omni-directional Images by a Mobile Mapping System (모바일매핑시스템으로 취득된 전방위 영상의 광속조정법)

  • Oh, Tae-Wan;Lee, Im-Pyeong
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.593-603
    • /
    • 2010
  • Most spatial data acquisition systems employing a set of frame cameras may have suffered from their small fields of view and poor base-distance ratio. These limitations can be significantly reduced by employing an omni-directional camera that is capable of acquiring images in every direction. Bundle Block Adjustment (BBA) is one of the existing georeferencing methods to determine the exterior orientation parameters of two or more images. In this study, by extending the concept of the traditional BBA method, we attempt to develop a mathematical model of BBA for omni-directional images. The proposed mathematical model includes three main parts; observation equations based on the collinearity equations newly derived for omni-directional images, stochastic constraints imposed from GPS/INS data and GCPs. We also report the experimental results from the application of our proposed BBA to the real data obtained mainly in urban areas. With the different combinations of the constraints, we applied four different types of mathematical models. With the type where only GCPs are used as the constraints, the proposed BBA can provide the most accurate results, ${\pm}5cm$ of RMSE in the estimated ground point coordinates. In future, we plan to perform more sophisticated lens calibration for the omni-directional camera to improve the georeferencing accuracy of omni-directional images. These georeferenced omni-directional images can be effectively utilized for city modelling, particularly autonomous texture mapping for realistic street view.

A development of submerged type multiprobe water-quality measuring instrument and remote monitoring system (침지형 다항목 수질계측기 및 원격 모니터링 시스템 개발)

  • Yang, Keun-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.3
    • /
    • pp.207-213
    • /
    • 2009
  • The quality of tap water on the whole water-supply system, from a large filtration plant to a private faucet, has to be guaranteed the standards of drinking water. At this point in time, however, the supply process of the tap water has not been monitored and managed scientifically. The piped water, especially the most small-scale reservoirs(underground or overhead type) are always exposed to various contaminations and impurities. Recently monitoring systems of water-quality were spread on some large filtration plants or distributing reservoirs. In particular, the water quality monitoring method using the internet is adopted into some local government whose inhabitants can check up the water quality anytime and anywhere. The construction of this system that has to apply a large scale needs, and has a limitation on the small water-supply system, such as apartments, public facilities and small-scale underground or overhead reservoirs. In this work, we suggest the integration system of individual water-quality sensor modules that have a low price. By using the developed integration system and online monitoring program operated on the internet, the system managers of reservoirs can monitor and manage water-quality characteristic values of drinking water in online. Since the proposed system was modularized, the system can be applied easily into various reservoirs with a low cost and regardless of its scale, small or large.

  • PDF

Characteristic Analysis of Wireless Channels to Construct Wireless Network Environment in Underground Utility Tunnels (지하공동구 내 무선 네트워크 환경구축을 위한 무선채널 특성 분석)

  • Byung-Jin Lee;Woo-Sug Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.27-34
    • /
    • 2024
  • The direct and indirect damages caused by fires in underground utility tunnels have a great impact on society as a whole, so efforts are needed to prevent and manage them in advance. To this end, research is ongoing to prevent disasters such as fire flooding by applying digital twin technology to underground utility tunnels. A network is required to transmit the sensed signals from each sensor to the platform. In essence, it is necessary to analyze the application of wireless networks in the underground utility tunnel environments because the tunnel lacks the reception range of external wireless communication systems. Within the underground utility tunnels, electromagnetic interference caused by transmission and distribution cables, and diffuse reflection of signals from internal structures, obstacles, and metallic pipes such as water pipes can cause distortion or size reduction of wireless signals. To ensure real-time connectivity for remote surveillance and monitoring tasks through sensing, it is necessary to measure and analyze the wireless coverage in underground utility tunnels. Therefore, in order to build a wireless network environment in the underground utility tunnels. this study minimized the shaded area and measured the actual cavity environment so that there is no problem in connecting to the wireless environment inside the underground utility tunnels. We analyzed the data transmission rate, signal strength, and signal-to-noise ratio for each section of the terrain of the underground utility tunnels. The obtained results provide an appropriate wireless planning approach for installing wireless networks in underground utility tunnels.

Comparison of Wind Vectors Derived from GK2A with Aeolus/ALADIN (위성기반 GK2A의 대기운동벡터와 Aeolus/ALADIN 바람 비교)

  • Shin, Hyemin;Ahn, Myoung-Hwan;KIM, Jisoo;Lee, Sihye;Lee, Byung-Il
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1631-1645
    • /
    • 2021
  • This research aims to provide the characteristics of the world's first active lidar sensor Atmospheric Laser Doppler Instrument (ALADIN) wind data and Geostationary Korea Multi Purpose Satellite 2A (GK2A) Atmospheric Motion Vector (AMV) data by comparing two wind data. As a result of comparing the data from September 2019 to August 1, 2020, The total number of collocated data for the AMV (using IR channel) and Mie channel ALADIN data is 177,681 which gives the Root Mean Square Error (RMSE) of 3.73 m/s and the correlation coefficient is 0.98. For a more detailed analysis, Comparison result considering altitude and latitude, the Normalized Root Mean Squared Error (NRMSE) is 0.2-0.3 at most latitude bands. However, the upper and middle layers in the lower latitudes and the lower layer in the southern hemispheric are larger than 0.4 at specific latitudes. These results are the same for the water vapor channel and the visible channel regardless of the season, and the channel-specific and seasonal characteristics do not appear prominently. Furthermore, as a result of analyzing the distribution of clouds in the latitude band with a large difference between the two wind data, Cirrus or cumulus clouds, which can lower the accuracy of height assignment of AMV, are distributed more than at other latitude bands. Accordingly, it is suggested that ALADIN wind data in the southern hemisphere and low latitude band, where the error of the AMV is large, can have a positive effect on the numerical forecast model.

Multi-point Dynamic Displacement Measurements of Structures Using Digital Image Correlation Technique (Digital Image Correlation기법을 이용한 구조물의 다중 동적변위응답 측정)

  • Kim, Sung-Wan;Kim, Nam-Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.11-19
    • /
    • 2009
  • Recently, concerns relating to the maintenance of large structures have been increased. In addition, the number of large structures that need to be evaluated for their structural safety due to natural disasters and structural deterioration has been rapidly increasing. It is common for the structural characteristics of an older large structure to differ from the characteristics in the initial design stage, and changes in dynamic characteristics may result from a reduction in stiffness due to cracks on the materials. The process of deterioration of such structures enables the detection of damaged locations, as well as a quantitative evaluation. One of the typical measuring instruments used for the monitoring of bridges and buildings is the dynamic measurement system. Conventional dynamic measurement systems require considerable cabling to facilitate a direct connection between sensor and DAQ logger. For this reason, a method of measuring structural responses from a remote distance without the mounted sensors is needed. In terms of non-contact methods that are applicable to dynamic response measurement, the methods using the doppler effect of a laser or a GPS are commonly used. However, such methods could not be generally applied to bridge structures because of their costs and inaccuracies. Alternatively, a method using a visual image can be economical as well as feasible for measuring vibration signals of inaccessible bridge structures and extracting their dynamic characteristics. Many studies have been conducted using camera visual signals instead of conventional mounted sensors. However, these studies have been focused on measuring displacement response by an image processing technique after recording a position of the target mounted on the structure, in which the number of measurement targets may be limited. Therefore, in this study, a model experiment was carried out to verify the measurement algorithm for measuring multi-point displacement responses by using a DIC (Digital Image Correlation) technique.

A standardized procedure on building spectral library for hazardous chemicals mixed in river flow using hyperspectral image (초분광 영상을 활용한 하천수 혼합 유해화학물질 표준 분광라이브러리 구축 방안)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.845-859
    • /
    • 2020
  • Climate change and recent heat waves have drawn public attention toward other environmental issues, such as water pollution in the form of algal blooms, chemical leaks, and oil spills. Water pollution by the leakage of chemicals may severely affect human health as well as contaminate the air, water, and soil and cause discoloration or death of crops that come in contact with these chemicals. Chemicals that may spill into water streams are often colorless and water-soluble, which makes it difficult to determine whether the water is polluted using the naked eye. When a chemical spill occurs, it is usually detected through a simple contact detection device by installing sensors at locations where leakage is likely to occur. The drawback with the approach using contact detection sensors is that it relies heavily on the skill of field workers. Moreover, these sensors are installed at a limited number of locations, so spill detection is not possible in areas where they are not installed. Recently hyperspectral images have been used to identify land cover and vegetation and to determine water quality by analyzing the inherent spectral characteristics of these materials. While hyperspectral sensors can potentially be used to detect chemical substances, there is currently a lack of research on the detection of chemicals in water streams using hyperspectral sensors. Therefore, this study utilized remote sensing techniques and the latest sensor technology to overcome the limitations of contact detection technology in detecting the leakage of hazardous chemical into aquatic systems. In this study, we aimed to determine whether 18 types of hazardous chemicals could be individually classified using hyperspectral image. To this end, we obtained hyperspectral images of each chemical to establish a spectral library. We expect that future studies will expand the spectral library database for hazardous chemicals and that verification of its application in water streams will be conducted so that it can be applied to real-time monitoring to facilitate rapid detection and response when a chemical spill has occurred.