• Title/Summary/Keyword: Remote sensing technique

Search Result 729, Processing Time 0.029 seconds

Two-dimensional Velocity Measurements of Campbell Glacier in East Antarctica Using Coarse-to-fine SAR Offset Tracking Approach of KOMPSAT-5 Satellite Image (KOMPSAT-5 위성영상의 Coarse-to-fine SAR 오프셋트래킹 기법을 활용한 동남극 Campbell Glacier의 2차원 이동속도 관측)

  • Chae, Sung-Ho;Lee, Kwang-Jae;Lee, Sungu
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.2035-2046
    • /
    • 2021
  • Glacier movement speed is the most basic measurement for glacial dynamics research and is a very important indicator in predicting sea level rise due to climate change. In this study, the two-dimensional velocity measurements of Campbell Glacier located in Terra Nova Bay in East Antarctica were observed through the SAR offset tracking technique. For this purpose, domestic KOMPSAT-5 SAR satellite images taken on July 9, 2021 and August 6, 2021 were acquired. The Multi-kernel SAR offset tracking proposed through previous studies is a technique to obtain the optimal result that satisfies both resolution and precision. However, since offset tracking is repeatedly performed according to the size of the kernel, intensive computational power and time are required. Therefore, in this study, we strategically proposed a coarse-to-fine offset tracking approach. Through coarse-to-fine SAR offset tracking, it is possible to obtain a result with improved observation precision (especially, about 4 times in azimuth direction) while maintaining resolution compared to general offset tracking results. Using this proposed technique, a two-dimensional velocity measurements of Campbell Glacier were generated. As a result of analyzing the two-dimensional movement velocity image, it was observed that the grounding line of Campbell Glacier exists at approximately latitude -74.56N. The flow velocity of Campbell Glacier Tongue analyzed in this study (185-237 m/yr) increased compared to that of 1988-1989 (140-240 m/yr). And compared to the flow velocity (181-268 m/yr) in 2010-2012, the movement speed near the ground line was similar, but it was confirmed that the movement speed at the end of the Campbell Glacier Tongue decreased. However, there is a possibility that this is an error that occurs because the study result of this study is an annual rate of glacier movement that occurred for 28 days. For accurate comparison, it will be necessary to expand the data in time series and accurately calculate the annual rate. Through this study, the two-dimensional velocity measurements of the glacier were observed for the first time using the KOMPSAT-5 satellite image, a domestic X-band SAR satellite. It was confirmed that the coarse-to-fine SAR offset tracking approach of the KOMPSAT-5 SAR image is very useful for observing the two-dimensional velocity of glacier movements.

Mobile Camera-Based Positioning Method by Applying Landmark Corner Extraction (랜드마크 코너 추출을 적용한 모바일 카메라 기반 위치결정 기법)

  • Yoo Jin Lee;Wansang Yoon;Sooahm Rhee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1309-1320
    • /
    • 2023
  • The technological development and popularization of mobile devices have developed so that users can check their location anywhere and use the Internet. However, in the case of indoors, the Internet can be used smoothly, but the global positioning system (GPS) function is difficult to use. There is an increasing need to provide real-time location information in shaded areas where GPS is not received, such as department stores, museums, conference halls, schools, and tunnels, which are indoor public places. Accordingly, research on the recent indoor positioning technology based on light detection and ranging (LiDAR) equipment is increasing to build a landmark database. Focusing on the accessibility of building a landmark database, this study attempted to develop a technique for estimating the user's location by using a single image taken of a landmark based on a mobile device and the landmark database information constructed in advance. First, a landmark database was constructed. In order to estimate the user's location only with the mobile image photographing the landmark, it is essential to detect the landmark from the mobile image, and to acquire the ground coordinates of the points with fixed characteristics from the detected landmark. In the second step, by applying the bag of words (BoW) image search technology, the landmark photographed by the mobile image among the landmark database was searched up to a similar 4th place. In the third step, one of the four candidate landmarks searched through the scale invariant feature transform (SIFT) feature point extraction technique and Homography random sample consensus(RANSAC) was selected, and at this time, filtering was performed once more based on the number of matching points through threshold setting. In the fourth step, the landmark image was projected onto the mobile image through the Homography matrix between the corresponding landmark and the mobile image to detect the area of the landmark and the corner. Finally, the user's location was estimated through the location estimation technique. As a result of analyzing the performance of the technology, the landmark search performance was measured to be about 86%. As a result of comparing the location estimation result with the user's actual ground coordinate, it was confirmed that it had a horizontal location accuracy of about 0.56 m, and it was confirmed that the user's location could be estimated with a mobile image by constructing a landmark database without separate expensive equipment.

Utilization of Unmanned Aerial Vehicle(UAV) Image for Detection of Algal Bloom in Nakdong River (무인항공영상을 활용한 낙동강 녹조 탐지)

  • Kim, Heung-Min;Jang, Seon-Woong;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.3
    • /
    • pp.457-464
    • /
    • 2017
  • The large breeding of algae in rivers has caused the algal bloom and has becoming a serious national problem for the safety of water sources. Therefore, in order to supply stable water resources through securing clean water, it is necessary to develop technology for prevention of water pollution caused by algal bloom. The purpose of this study is to improve the water quality management ability of river by applying the algal bloom detection technique using UAV. Unmanned aerial images were acquired for the Dodong in the middle region of the Nakdong River where algal bloom are frequent. In addition, the phytoplankton concentration was acquired through the sampling of algal bloom and the examination of water quality. Correlation between phytoplankton concentrations and the results of applying the algal bloom index to the Unmanned aerial images showed a strong positive correlation. The remote sensing method suggested in this study is expected to improve the initial response capability of river water pollution.

Identification of the Anthropogenic Land Surface Temperature Distribution by Land Use Using Satellite Images: A Case Study for Seoul, Korea

  • Bhang, Kon Joon;Lee, Jin-Duk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.249-260
    • /
    • 2017
  • UHI (Urban Heat Island) is an important environmental issue occurring in highly developed (or urbanized) area such as Seoul Metropolitan City of Korea due to modification of the land surface by man-made structures. With the advance of the remote sensing technique, land cover types and LST (Land Surface Temperature) influencing UHI were frequently investigated describing that they have a positive relationship. However, the concept of land cover considers material characteristics of the urban cover in a comprehensive way and does not provide information on how human activities influence on LST in detail. Instead, land use reflects ways of land use management and human life patterns and behaviors, and explains the relationship with human activities in more details. Using this concept, LST was segmented according to land use types from the Landsat imagery to identify the human-induced heat from the surface and interannual and seasonal variation of LST with GIS. The result showed that the LST intensity of Seoul was greatest in the industrial area and followed by the commercial and residential areas. In terms of size, the residential area could be defined as the major contributor among six urban land use types (i.e., residential, industrial, commercial, transportation, etc.) affecting UHI during daytime in Seoul. For temperature, the industrial area was highest and could be defined as a major contributor. It was found that land use type was more appropriate to understand the human-induced effect on LST rather than land cover. Also, there was no significant change in the interannual pattern of LST in Seoul but the seasonal difference provided a trigger that the human life pattern could be identified from the satellite-derived LST.

Monitoring of Landslide in Kangwondo Area using 2-Pass DInSAR Technique (2-Pass DInSAR 기술을 활용한 강원도 지역 산사태 탐측)

  • Yoo, Su Hong;Sohn, Hong Gyoo;Jung, Jae Hoon;Choi, Si Kyong
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.2
    • /
    • pp.85-90
    • /
    • 2009
  • In recent days, climatic change cause abnormal weather all over the world and we have a great loss of life and property every year. In Korea, we suffer from landslide problem because large regions of Korea Peninsula are composed of mountain. In order to detect rapidly and to take follow-up measures of disaster, the remote sensing is being used actively as conventional field survey has many restrictions in accessibility because of more time and man power requirement. In additions interferometric SAR is one of the techniques that have our attention because it can provide many kinds of accurate surface information without restriction of atmospheric and ground conditions by using L-band. In this study, we aimed to monitor the displacement of mountain area in Kangwondo and this results will be used for detecting landslide. Also we build the web system for detecting and analyzing the landslide.

  • PDF

CROSS-INTERFEROMETRY FOR DEM CONSTRUNTION WITH ERS-ENVISAT PAIR

  • Hong Sang-Hoon;Won Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.542-545
    • /
    • 2005
  • Spaceborne radar interferometry has been widely used to estimate the topography and deformation of the Earth. It is difficult to obtain coherent interferometric SAR pairs especially over coastal areas mainly because of variation of surface conditions. We carried out the experiment using a cross-interferometric pair with a perpendicular baseline of about 1.4 km, a 30 minutes temporal separation and the height sensitivity of about 6 meters. The temporal decorrelation can be reduced by the cross interferometric technique with a 30 minutes temporal separation. Accurate coregistration was performed through resampling of ENVISAT ASAR data to equivalent pixel spacing to the ERS SAR data, because of the differences of the pulse repetition frequency and range sampling rate between the two sensors. Then we estimated range and azimuth offset to a sub-pixel accuracy using image intensity cross correlation. A larger window chip size than a general case was used because it was difficult to distinguish typical features. As range bin increased, the difference of Doppler centroid also increased. It resulted in lower coherence in far range than in near range. Coherences over wetland in near and far range were about 0.8 and 0.5, respectively. The coherence was improved by applying azimuth and range common band filtering, but coherence gap still existed. ERS-ENVISAT cross-interferogram usually lost information in urban area. However, high coherence over a city in this pair was shown, because of less man-made structures than other major cities. Accuracy of the DEM constructed by the ERS-ENVISAT 30-minute pair in a coastal area is to be evaluated.

  • PDF

A SCATTERING MECHANISM IN OYSTER FARM BY POLARIMETRIC AND JERS-l DATA

  • Lee Seung-Kuk;Won Joong Sun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.538-541
    • /
    • 2005
  • Tidal flats develop along the south coast ofthe Korean peninsula. These areas are famous for sea farming. Specially, strong and coherent radar backscattering signals are observed over oyster sea farms that consist of artificial structures. Tide height in oyster farm is possible to measure by using interferometric phase and intensity of SAR data. It is assumed that the radar signals from oyster farm could be considered as double-bouncing returns by vertical and horizontal bars. But, detailed backscattering mechanism and polarimetric characteristics in oyster farm had not been well studied. We could not demonstrate whether the assumption is correct or not and exactly understand what the properties of back scattering were in oyster farm without full polarimetric data. The results of AIRSAR L-band POLSAR data, experiments in laboratory and JERS-l images are discussed. We carried out an experiment simulating a target structure using vector network analyser (Y.N.A.) in an anechoic chamber at Niigata University. Radar returns from vertical poles are stronger than those from horizontal poles by 10.5 dB. Single bounce components were as strong as double bounce components and more sensitive to antenna look direction. Double bounce components show quasi-linear relation with height of vertical poles. As black absorber replaced AI-plate in bottom surface, double bounce in vertical pole decreased. It is observed that not all oyster farms are characterized by double bounced scattering in AIRSAR data. The image intensity of the double bounce dominant oyster farm was investigated with respect to that of oyster farm dominated by single bounce in JERS-l SAR data. The image intensity model results in a correlation coefficient (R2 ) of 0.78 in double bounce dominant area while that of 0.54 in single bouncing dominant area. This shows that double bounce dominant area should be selected for water height measurement using In8AR technique.

  • PDF

A Study on the Establishment of Agricultural Satellite Development Policy (농림업 중형위성 개발정책 수립에 관한 연구)

  • Kim, Hyeon-Cheol;Kim, Ah-Leum;Kim, Bum-Seung;Hong, Suk-Young;Lee, Woo-Kyung
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.87-94
    • /
    • 2015
  • The increasing demands and utilization of the multi-purpose satellites have led to diverse research activities with regards to satellite image processing and applications. In the domestic development project for the Compact Advanced Satellite, it is a goal to develop the satellite with the domestic individual technique performing a various tasks such as the earth observation, the monitoring of the weather, climate and environment. In particular, the Compact Advanced Satellite is expect to be widely used in the agricultural sector, which account for a substantial part of public demand. This paper aims at establishing the way to utilize the satellite imagery in the domestic institution and the strategy for securing the specialized satellite payload in the agriculture sector. The technical element of satellite has a high value, so that it is hard to be transferred technology. For this reason, it is required to establish the domestic development planning. Furthermore, this paper can be utilized to identify and support the incoming Compact Advanced Satellite development plan utilizing satellite images capabilities specially in agricultural sector.

Estimation Method of Evapotranspiration through Vegetation Monitoring over Wide Area (식생해석을 통한 광역증발산량 추정 방법의 개발)

  • 신사철
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.14 no.1
    • /
    • pp.81-88
    • /
    • 1996
  • Remote sensing technique is a probable means to estimate distribution of actual evapotranspiration over wide area in connection with regional characteristics of vegetation and landuse. Factors controlling evapotranspiration from ground are air temperature, humidity, wind, radiation, soil moisture and so on. Not only the vegetation influences directly the evapotranspiration, but also these factors strongly influnce the vegetation at the area. Therefore we can expect high correlation between the evapotranspiration and the vegetation. To grasp the state of vegetation at any point, NDVI calculated from NOAA/AVHRR data is utilized. It can be considered that evapotranspiration at a forest region is linearly proportional to the NDVI. Here, a model which adopts a direct method to estimate actual evapotranspiration is developed by using the relationship between NDVI and evapotranspiration. This method makes possible to estimate evapotranspiration of Korean Peninsula including North Korea where enough meteorological and hydrological data are unavailable.

  • PDF

Satellite Remote Sensing Application: Facilities Analysis of Laver Cultivation Grounds System (인공위성 원격탐사의 활용: 김양식장의 현황 모니터링)

  • Yang, Chan-Su;Moon, Jeong-Eon;Lee, Nu-Ree;Park, Sung-Woo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.05a
    • /
    • pp.47-52
    • /
    • 2006
  • The cultural grounds of laver has been surveyed using SPOT-5 satellite images to calculate the facilities of laver cultivation area in the coastal waters of Korea 10m resolution multispectral images of SPOT-5 are adopted for the south area of Daebu Island, Hwaseong city to develop an automatic detection approach of laver nets that consists of the following: band difference technique, canny edge detector and morphological analysis. The satellite-based facilities number was relatively high as compared with the licensed number in 2005, 676,749 chaek and 572,745 chaek(柵, unit of measure for laver farm), respectively. The data could be applied to achieve a good harvest for laver seaweed growers and to control its national production keeping a stable market price for the government body.

  • PDF