• Title/Summary/Keyword: Remote sensing imagery

Search Result 814, Processing Time 0.029 seconds

Occlusion Restoration of Synthetic Stereomate for Remote Sensing Imagery

  • Kim, Hye-Jin;Choi, Jae-Wan;Chang, Ho-Wook;Ryu, Ki-Yun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.439-445
    • /
    • 2007
  • Stereoscopic viewing is an efficient technique for not only computer vision but also remote sensing applications. Generally, stereo pair obtained at the same time is necessary for 3D viewing, but it is possible to synthesize a stereomate suitable for stereo view with a single image and disparity-map. There have been researches concerning the generation of the synthetic stereomate from remote sensing imagery. However it is hard to find researches concerning the restoration of occlusion in stereomate. In this paper, we generated synthetic stereomates from remote sensing images, focused on the occlusion restoration. In order to figure out proper restoration methods depending on the spatial resolution of remote sensing imagery, we tested several methods including general interpolation and inpainting technique, then evaluated the results.

Predicting ground-based damage states from windstorms using remote-sensing imagery

  • Brown, Tanya M.;Liang, Daan;Womble, J. Arn
    • Wind and Structures
    • /
    • v.15 no.5
    • /
    • pp.369-383
    • /
    • 2012
  • Researchers have recently begun using high spatial resolution remote-sensing data, which are automatically captured and georeferenced, to assess damage following natural and man-made disasters, in addition to, or instead of employing the older methods of walking house-to-house for surveys, or photographing individual buildings from an airplane. This research establishes quantitative relationships between the damage states observed at ground-level, and those observed from space using high spatial resolution remote-sensing data, for windstorms, for individual site-built one- or two-family residences (FR12). "Degrees of Damage" (DOD) from the Enhanced Fujita (EF) Scale were determined for ground-based damage states; damage states were also assigned for remote-sensing imagery, using a modified version of Womble's Remote-Sensing (RS) Damage Scale. The preliminary developed model can be used to predict the ground-level damage state using remote-sensing imagery, which could significantly lessen the time and expense required to assess the damage following a windstorm.

Automatic Road Extraction by Gradient Direction Profile Algorithm (GDPA) using High-Resolution Satellite Imagery: Experiment Study

  • Lee, Ki-Won;Yu, Young-Chul;Lee, Bong-Gyu
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.393-402
    • /
    • 2003
  • In times of the civil uses of commercialized high-resolution satellite imagery, applications of remote sensing have been widely extended to the new fields or the problem solving beyond traditional application domains. Transportation application of this sensor data, related to the automatic or semiautomatic road extraction, is regarded as one of the important issues in uses of remote sensing imagery. Related to these trends, this study focuses on automatic road extraction using Gradient Direction Profile Algorithm (GDPA) scheme, with IKONOS panchromatic imagery having 1 meter resolution. For this, the GDPA scheme and its main modules were reviewed with processing steps and implemented as a prototype software. Using the extracted bi-level image and ground truth coming from actual GIS layer, overall accuracy evaluation and ranking error-assessment were performed. As the processed results, road information can be automatically extracted; by the way, it is pointed out that some user-defined variables should be carefully determined in using high-resolution satellite imagery in the dense or low contrast areas. While, the GDPA method needs additional processing, because direct results using this method do not produce high overall accuracy or ranking value. The main advantage of the GDPA scheme on road features extraction can be noted as its performance and further applicability. This experiment study can be extended into practical application fields related to remote sensing.

Application Fields and Strategy of KOMPSAT-2 Imagery

  • Sakong, Ho-Sang;Im, Jung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.43-52
    • /
    • 2002
  • KOMPSAT-2 satellite is being developed to be launched in 2004 expectingly. This paper is investigating application status of satellite imagery data using various domestic and foreign references such as journals and dissertations and seeing status of policy making and project implementation. In order to promote the application of KOMPSAT-2 imagery, its application ways in each field are presented. In addition, this paper suggests strategies to induce application of KOMPSAT-2 imagery.

Extraction of Some Transportation Reference Planning Indices using High-Resolution Remotely Sensed Imagery

  • Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.5
    • /
    • pp.263-271
    • /
    • 2002
  • Recently, spatial information technologies using remotely sensed imagery and functionality of GIS (Geographic Information Systems) have been widely utilized to various types of transportation-related applications. In this study, extraction programs of some practical indices, to be effectively used in transportation reference planning problem, were designed and implemented as prototyped extensions in GIS development environment: traffic flow estimation (TFL/TFB), urban rural index (URI), and accessibility index (AI). In TFL/TFB, user can obtain quantitative results on traffic flow estimation at link/block using high-resolution satellite imagery. Whereas, URI extension provides urban-rural characteristics related to road system, being considered one of important factors in transportation planning. Lastly, AI extension helps to obtain accessibility index between nodes of road segments and surrounding district areas touched or intersected with the road network system, and it also provides useful information for transportation planning problems. This approach is regarded as one of RS-T (Remote Sensing in Transportation), and it is expected to expand as new application of remotely sensed imagery.

Watershed Segmentation of High-Resolution Remotely Sensed Imagery

  • WANG Ziyu;ZHAO Shuhe;CHEN Xiuwan
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.107-109
    • /
    • 2004
  • High-resolution remotely sensed data such as SPOT-5 imagery are employed to study the effectiveness of the watershed segmentation algorithm. Existing problems in this approach are identified and appropriate solutions are proposed. As a case study, the panchromatic SPOT-5 image of part of Beijing urban areas has been segmented by using the MATLAB software. In segmentation, the structuring element has been firstly created, then the gaps between objects have been exaggerated and the objects of interest are converted. After that, the intensity valleys have been detected and the watershed segmentation have been conducted. Through this process, the objects in an image are divided into separate objects. Finally, the effectiveness of the watershed segmentation approach for high-resolution imagery has been summarized. The approach to solve the problems such as over-segmentation has been proposed.

  • PDF

Geometric Assessment and Correction of SPOT5 Imagery

  • Kwoh, Leong Keong;Xiong,, Zhen;Shi, Fusheng
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.286-288
    • /
    • 2003
  • In this paper, we present our implementation of the direct camera model (image to ground) for SPOT5 and use it to assess the geometric accuracy of SPOT5 imagery. Our assessment confirms the location accuracy of SPOT5 imagery (without use of GCPs) is less than 50m. We further introduce a few attitude parameters to refine the camera model with GCPs. The model is applied to two SPOT5 supermode images, one near vertical, incidence angle of 3 degrees, and one far oblique, incidence angle of 27 degrees. The results show that accuracy (rms of check points) of about one pixel (2.5m) can be achieved with about 4 GCPs by using only 3 parameters to correct the yaw, pitch and roll of the satellite.

  • PDF

SIMP: SLICKS AS INDICATORS FOR MARINE PROCESSES

  • Mitnik, Leonid M.;Gade, Martin;Ermakov, Stanislav A.;Lavrova, Olga Yu.;Silva, Jose B.C. da;Woolf, David K.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.950-953
    • /
    • 2006
  • SIMP is an international project funded by INTAS aimed at improving the information content, which can be inferred from multi-sensor satellite imagery of marine coastal areas. Scientific teams from Germany, UK, Portugal, and Russia focus on the development of novel tools for marine remote sensing of the coastal zone. In particular, the project teams' benefit from the fact that surface films may enhance the signatures of hydrodynamic processes such as plumes, internal waves, eddies, etc., on microwave, optical, and infrared imagery. The project's objectives are to develop a robust methodology for identifying slick-related phenomena/processes through their surface signatures and thereby, to improve the discrimination capabilities between slicks and other oceanic and atmospheric phenomena by taking into account information gained from satellite imagery quasi-simultaneously recorded at microwave, visible and IR wavelengths. The results of the two project years are summarized. Examples are given for the project’s web presentation, laboratory and field experiments, and of the analyses of various satellite data.

  • PDF

Enhanced remote-sensing scale for wind damage assessment

  • Luo, Jianjun;Liang, Daan;Kafali, Cagdas;Li, Ruilong;Brown, Tanya M.
    • Wind and Structures
    • /
    • v.19 no.3
    • /
    • pp.321-337
    • /
    • 2014
  • This study has developed an Enhanced Remote-Sensing (ERS) scale to improve the accuracy and efficiency of using remote-sensing images of residential building to predict their damage conditions. The new scale, by incorporating multiple damage states observable on remote-sensing imagery, substantially reduces measurement errors and increases the amount of information retained. A ground damage survey was conducted six days after the Joplin EF 5 tornado in 2011. A total of 1,400 one- and two-family residences (FR12) were selected and their damage states were evaluated based on Degree of Damage (DOD) in the Enhanced Fujita (EF) scale. A subsequent remote-sensing survey was performed to rate damages with the ERS scale using high-resolution aerial imagery. Results from Ordinary Least Square regression indicate that ERS-derived damage states could reliably predict the ground level damage with 94% of variance in DOD explained by ERS. The superior performance is mainly because ERS extracts more information. The regression model developed can be used for future rapid assessment of tornado damages. In addition, this study provides strong empirical evidence for the effectiveness of the ERS scale and remote-sensing technology for assessment of damages from tornadoes and other wind events.