• Title/Summary/Keyword: Remote sensing and sensors

Search Result 353, Processing Time 0.027 seconds

New Sensors - New Methods of Knowledge Transfer

  • Tempfli, K.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.210-212
    • /
    • 2003
  • Active sensors are rapidly conquering a share on the remote sensing market and offer among others new possibilities toward automatically acquiring 3D building data. Better dissemination of information about new technological developments can possibly be achieved by short distance-learning courses. The paper describes the didactic and technical aspects of a course we have designed and conducted on airborne laser scanning and interferometric SAR. The building extraction application is a good example to illustrated the added value of short electronic-learning courses above simply publishing (digital) papers.

  • PDF

Change Detection of Buildings Using High Resolution Remotely Sensed Data

  • Zeng, Yu;Zhang, Jixian;Wang, Guangliang
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.530-535
    • /
    • 2002
  • An approach for quickly updating GIS building data using high resolution remotely sensed data is proposed in this paper. High resolution remotely sensed data could be aerial photographs, satellite images and airborne laser scanning data. Data from different types of sensors are integrated in building extraction. Based on the extracted buildings and the outdated GIS database, the change-detection-template can be automatically created. Then, GIS building data can be fast updated by semiautomatically processing the change-detection-temp late. It is demonstrated that this approach is quick, effective and applicable.

  • PDF

Overview of NASA/JPL AIRSAR PACRIM2 Program (미국 NASA/JPL AIRSAR PACRIM 2 개요)

  • Suh, Ae-Sook;Song, Byung-Hyun;Kim, Kum-Lan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.2
    • /
    • pp.87-97
    • /
    • 2000
  • Recently microwave remote sensing technology is widely used in Global environment study. Expecially Synthetic Aperture Radar sensing technique has many application to geographic information. Proposed AIRSAR Pacific Rim Deployment 2000(PACRIM2) is a NASA-sponsored science mission. AIRSAR is a test-bed instrument for new radar technologies in near future from space shuttle and satellite systems. In this paper the overview of PACRIM2 overview and sensors are introduced. Examples of processed data from new sensors are also shown.

  • PDF

Current Status of Hyperspectral Remote Sensing: Principle, Data Processing Techniques, and Applications (초분광 원격탐사의 특성, 처리기법 및 활용 현용)

  • Kim Sun-Hwa;Ma Jung-Rim;Kook Min-Jung;Lee Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.341-369
    • /
    • 2005
  • Hyperspectral images have emerged as a new and promising remote sensing data that can overcome the limitations of existing optical image data. This study was designed to provide a comprehensive review on definition, data processing methods, and applications of hyperspectral data. Various types of airborne, spaceborne, and field hyperspectral image sensors were surveyed from the available literatures and internet search. To understand the current status of hyperspectral remote sensing technology and research development, we collected several hundreds research papers from international journals (IEEE Transactions on Geoscience and Remote Sensing, International Journal of Remote Sensing, Remote Sensing of Environment and AVIRIS Workshop Proceedings), and categorized them by sensor types, data processing techniques, and applications. Although several hyperspectral sensors have been developing, AVIRIS has been a primary data source that the most hyperspectral remote sensing researches were relied on. Since hyperspectral data have very large data volume with many spectral bands, several data processing techniques that are particularly oriented to hyperspectral data have been developed. Although atmospheric correction, spectral mixture analysis, and spectral feature extraction are among those processing techniques, they are still in experimental stage and need further refinement until the fully operational adaptation. Geology and mineral exploration were major application in early stage of hyperspectral sensing because of the distinct spectral features of rock and minerals that could be easily observed with hyperspectral data. The applications of hyperspectral sensing have been expanding to vegetation, water resources, and military areas where the multispectral sensing was not very effective to extract necessary information.

A Review on Atmospheric Correction Technique Using Satellite Remote Sensing (인공위성 원격탐사를 이용한 대기보정 기술 고찰)

  • Lee, Kwon-Ho;Yum, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.1011-1030
    • /
    • 2019
  • Remote sensing sensors used in satellites or aircrafts measure electromagnetic waves passing through the earth's atmosphere, and thus the information on the surface of the earth is affected as it is absorbed or scattered by the earth's atmosphere. Although satellites have different wavelength ranges and resolutions depending on the purpose of onboard sensors, in general, atmospheric correction must be made to remove the influence of the atmosphere in order to accurately measure the spectral signal of an object on the earth's surface. The purpose of atmospheric correction is to remove the atmospheric effect from remote sensing images to determine surface reflectivity values and to derive physical parameters of the surface. Until recently, atmospheric correction algorithms have evolved from image-based empirical methods or indirect methods using in-situ observation data to direct methods that numerically interpret more complex radiative transfer processes. This study analyzes the research records of atmospheric correction algorithms developed over the past 40 years, systematically establishes the current state of atmospheric correction technology and the results of major atmospheric correction algorithms and presents the current status and research trends of related technologies.

Research on Key Technologies of UAV Remote Sensing Operation Systems

  • Yan, Lei;Lu, Shuqiang;Zhang, Xuehu;Zhao, Hongying;Yang, Shaowen;Zhao, Jicheng;Li, Peijun;Wang, Kedong;Yao, Yuanhong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1377-1379
    • /
    • 2003
  • Satellite and aerial remote sensing (RS) techniques have been provided to collect spatial data globally over the last few decades. However in developing countries such as China, there is still an urgent need for low cost and high resolution RS data. As an emerging RS platform, commercial Unmanned Aerial Vehicle (UAV) integrated with state-of-the-art sensors and information technologies has the potential to become a low cost tool to meet application demands. In this paper, the architecture of UAV RS operation system is mentioned. Moreover, key technologies in UAV RS system are analyzed and current work is reported.

  • PDF

Assessment of Agricultural Environment Using Remote Sensing and GIS

  • Hong Suk Young
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2005.08a
    • /
    • pp.75-87
    • /
    • 2005
  • Remote sensing(RS)- and geographic information system(GIS)-based information management to measure and assess agri-environment schemes, and to quantify and map environment indicators for nature and land use, climate change, air, water and energy balance, waste and material flow is in high demand because it is very helpful in assisting decision making activities of farmers, government, researchers, and consumers. The versatility and ability of RS and GIS containing huge soil database to assess agricultural environment spatially and temporally at various spatial scales were investigated. Spectral and microwave observations were carried out to characterize crop variables and soil properties. Multiple sources RS data from ground sensors, airborne sensors, and also satellite sensors were collected and analyzed to extract features and land cover/use for soils, crops, and vegetation for support precision agriculture, soil/land suitability, soil property estimation, crop growth estimation, runoff potential estimation, irrigated and the estimation of flooded areas in paddy rice fields. RS and GIS play essential roles in a management and monitoring information system. Biosphere-atmosphere interection should also be further studied to improve synergistic modeling for environment and sustainability in agri-environment schemes.

  • PDF

Combination of fuzzy models via economic management for city multi-spectral remote sensing nano imagery road target

  • Weihua Luo;Ahmed H. Janabi;Joffin Jose Ponnore;Hanadi Hakami;Hakim AL Garalleh;Riadh Marzouki;Yuanhui Yu;Hamid Assilzadeh
    • Advances in nano research
    • /
    • v.16 no.6
    • /
    • pp.531-548
    • /
    • 2024
  • The study focuses on using remote sensing to gather data about the Earth's surface, particularly in urban environments, using satellites and aircraft-mounted sensors. It aims to develop a classification framework for road targets using multi-spectral imagery. By integrating Convolutional Neural Networks (CNNs) with XGBoost, the study seeks to enhance the accuracy and efficiency of road target identification, aiding urban infrastructure management and transportation planning. A novel aspect of the research is the incorporation of quantum sensors, which improve the resolution and sensitivity of the data. The model achieved high predictive accuracy with an MSE of 0.025, R-squared of 0.85, RMSE of 0.158, and MAE of 0.12. The CNN model showed excellent performance in road detection with 92% accuracy, 88% precision, 90% recall, and an f1-score of 89%. These results demonstrate the model's robustness and applicability in real-world urban planning scenarios, further enhanced by data augmentation and early stopping techniques.

Effects of Environmental Conditions on Vegetation Indices from Multispectral Images: A Review

  • Md Asrakul Haque;Md Nasim Reza;Mohammod Ali;Md Rejaul Karim;Shahriar Ahmed;Kyung-Do Lee;Young Ho Khang;Sun-Ok Chung
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.319-341
    • /
    • 2024
  • The utilization of multispectral imaging systems (MIS) in remote sensing has become crucial for large-scale agricultural operations, particularly for diagnosing plant health, monitoring crop growth, and estimating plant phenotypic traits through vegetation indices (VIs). However, environmental factors can significantly affect the accuracy of multispectral reflectance data, leading to potential errors in VIs and crop status assessments. This paper reviewed the complex interactions between environmental conditions and multispectral sensors emphasizing the importance of accounting for these factors to enhance the reliability of reflectance data in agricultural applications.An overview of the fundamentals of multispectral sensors and the operational principles behind vegetation index (VI) computation was reviewed. The review highlights the impact of environmental conditions, particularly solar zenith angle (SZA), on reflectance data quality. Higher SZA values increase cloud optical thickness and droplet concentration by 40-70%, affecting reflectance in the red (-0.01 to 0.02) and near-infrared (NIR) bands (-0.03 to 0.06), crucial for VI accuracy. An SZA of 45° is optimal for data collection, while atmospheric conditions, such as water vapor and aerosols, greatly influence reflectance data, affecting forest biomass estimates and agricultural assessments. During the COVID-19 lockdown,reduced atmospheric interference improved the accuracy of satellite image reflectance consistency. The NIR/Red edge ratio and water index emerged as the most stable indices, providing consistent measurements across different lighting conditions. Additionally, a simulated environment demonstrated that MIS surface reflectance can vary 10-20% with changes in aerosol optical thickness, 15-30% with water vapor levels, and up to 25% in NIR reflectance due to high wind speeds. Seasonal factors like temperature and humidity can cause up to a 15% change, highlighting the complexity of environmental impacts on remote sensing data. This review indicated the importance of precisely managing environmental factors to maintain the integrity of VIs calculations. Explaining the relationship between environmental variables and multispectral sensors offers valuable insights for optimizing the accuracy and reliability of remote sensing data in various agricultural applications.