Browse > Article
http://dx.doi.org/10.7780/kjrs.2019.35.6.1.11

A Review on Atmospheric Correction Technique Using Satellite Remote Sensing  

Lee, Kwon-Ho (Department of Atmospheric Environmental Sciences, Gangneung Wonju National University)
Yum, Jong-Min (Satellite Application Division, National Satellite Operation & Application Center, Korea Aerospace Research Institute)
Publication Information
Korean Journal of Remote Sensing / v.35, no.6_1, 2019 , pp. 1011-1030 More about this Journal
Abstract
Remote sensing sensors used in satellites or aircrafts measure electromagnetic waves passing through the earth's atmosphere, and thus the information on the surface of the earth is affected as it is absorbed or scattered by the earth's atmosphere. Although satellites have different wavelength ranges and resolutions depending on the purpose of onboard sensors, in general, atmospheric correction must be made to remove the influence of the atmosphere in order to accurately measure the spectral signal of an object on the earth's surface. The purpose of atmospheric correction is to remove the atmospheric effect from remote sensing images to determine surface reflectivity values and to derive physical parameters of the surface. Until recently, atmospheric correction algorithms have evolved from image-based empirical methods or indirect methods using in-situ observation data to direct methods that numerically interpret more complex radiative transfer processes. This study analyzes the research records of atmospheric correction algorithms developed over the past 40 years, systematically establishes the current state of atmospheric correction technology and the results of major atmospheric correction algorithms and presents the current status and research trends of related technologies.
Keywords
remote sensing; atmospheric correction; algorithm; radiative transfer;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Gao, B. and A.F.H. Goetz, 1990. Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data, Journal of Geophysical Research, 95(D4): 3549-3564.   DOI
2 Gao, B.C., K.B. Heidebrecht, and A.F.H. Goetz, 1993. Derivation of scaled surface reflectances from AVIRIS data, Remote Sensing of Environment, 44(2-3): 165-178.   DOI
3 Gao, B.C., M.J. Montes, C.O. Davis, and A.F.H. Goetz, 2009. Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean, Remote Sensing of Environment, 113(1): 17-24.   DOI
4 Goetz, A.F.H., B.C. Bruce, M. Ferri, and Z. Qu, 2003. HATCH: Results from simulated radiances, AVIRIS and Hyperion, Institute of Electrical and Electronics Engineers Transactions on Geoscience Remote Sensing, 41(6): 1215-1222.
5 Goetz, A.F.H., G. Vane, J. Solomon, and B.N. Rock, 1985. Imaging spectrometry for Earth remote sensing, Science, 228(4704): 1147-1153.   DOI
6 Goetz, A.F.H., K.B. Heidebrecht, B. Kindel, and J.W. Boardman, 1998. Using ground spectral irradiance for model correction of AVIRIS data, Proc. of the 7th JPL Airborne Earth Science Workshop, Pasadena, CA, Jan. 12-16, vol. 1, pp. 159-168.
7 Gordon, I.E., L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, B.J. Drouin, J.-M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, V.I. Perevalov, A. Perrin, K.P. Shine, M.A.H. Smith, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, A. Barbe, A.G. Csaszar, V. M. Devi, T. Furtenbacher, J.J. Harrison, J.-M. Hartmann, A. Jolly, T.J. Johnson, T. Karman, I. Kleiner, A.A. Kyuberis, J. Loos, O.M. Lyulin, S.T. Massie, S.N. Mikhailenko, N. Moazzen-Ahmadi, H.S.P. Muller, O.V. Naumenko, A.V. Nikitin, O.L. Polyansky, M. Rey, M. Rotger, S.W. Sharpe, K. Sung, E. Starikova, S.A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcislo, S. Yu, and E.J. Zak, 2017. The HITRAN2016 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, 203: 3-69.   DOI
8 Janzen, D.T., A.L. Fredeen, and R.D. Wheate, 2006. Radiometric correction techniques and accuracy assessment for Landsat TM data in remote forested regions, Canadian Journal of Remote Sensing, 32(5): 330-340.   DOI
9 Griggs, M., 1975. Measurements of atmospheric aerosol optical thickness over water using ERTS-1 data, Journal of the Air Pollution Control Association, 25(6): 622-626.   DOI
10 Hadjimitsis, D.G., G. Papadavid, A. Agapiou, K. Themistocleous, M.G. Hadjimitsis, A. Retalis, S. Michaelides, N. Chrysoulakis, L. Toulios, and C.R.I Clayton, 2010. Atmospheric correction for satellite remotely sensed data intended for agricultural applications: impact on vegetation indices, Natural Hazards and Earth System Sciences, 10(1): 89-95.   DOI
11 Karpouzli, E. and T. Malthus, 2003. The empirical line method for the atmospheric correction of IKONOS imagery, International Journal of Remote Sensing, 24(5): 1143-1150.   DOI
12 Kneizys F.X., E.P. Shettle, L.W. Abreu, J.H. Chetwynd, G.P. Anderson, W.O. Gallery, J.E.A. Selby, and S.A. Clough, 1988. User's Guide to LOWTRAN-7, Air Force Geophysics Laboratory, Hanscom AFB, Bedford, MA, USA.
13 Kim, K.R., H.G. Kim, H.S. Jang, G.H. Sohn, and K.H. Choi, 1993. Precise range determination using laser range data of LAGEOS II, Journal of Astronomy and Space Sciences, 10(2): 189-196.
14 Kim, S.B., M.H. Ahn, K.H. Kim, M.G. Kim, and H.S. Sakong, 2001. Technology tree and domestic research status of satellite remote-sensing of the Earth, Korean Journal of Remote Sensing, 17(3): 253-273 (in Korean with English abstract).   DOI
15 Kim, S.H., K.S. Lee, J.R. Ma, and M.J. Kook, 2005. Current status of hyperspectral remote sensing: principle, data processing techniques, and applications, Korean Journal of Remote Sensing, 21(4): 341-369 (in Korean with English abstract).   DOI
16 Kotchenova, S.Y., E.F. Vermote, R. Matarrese, and F.J. Klemm Jr., 2006. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data, Part I: Path Radiance, Applied Optics, 45(26): 6726-6774.
17 Kneizys F.X., L.W. Abreu, G.P. Anderson, J.H. Chetwynd, E.P. Shettle, A. Berk, L.S. Bernstein, D.C. Robertson, P. Acharya, L.S. Rothman, J.E.A. Selby, W.O. Gallery, and S.A. Clough, 1996. The MODTRAN 2/3 Report and LOWTRAN 7 MODEL, Phillips Laboratory, Hanscom AFB, Bedford, MA, USA.
18 Kneizys, F.X., 1978. Atmospheric Transmittance And Radiance: The Lowtran Code, Proc. of SPIE'S Optical Properties of the Atmosphere, Washington, D.C., Mar. 28-29, vol. 0142.
19 Kotchenova, S.Y. and E.F. Vermote, 2007. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data, Part II: Homogeneous Lambertian and anisotropic surfaces, Applied Optics, 46(20): 4455-4464.   DOI
20 Kruse, F.A., K.S. Kiereinyoung, and J.W. Boardman, 1990. Mineral mapping at Cuprite, Nevada with a 63-channel imaging spectrometer, Photogrammetric Engineering and Remote Sensing, 56(1): 83-92.
21 Kruse, F. A., 1988. Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern Grapevine Mountains, Nevada and California, Remote Sensing of Environment, 24(1): 31-51.   DOI
22 Kumar, M.V. and K. Yarrakula, 2017. Comparison of efficient techniques of hyper-spectral image preprocessing for mineralogy and vegetation studies, Indian Journal of Geo-Marine Sciences, 46(5): 1008-1021.
23 Lee, H.Y., 2006. Investigation of SAR systems, technologies and application fields by a statistical analysis of SAR-related journal, Korean Journal of Remote Sensing, 22(2): 153-174 (in Korean with English abstract).   DOI
24 Perkins, T., S.M. Adler-Golden, M.W. Matthew, A. Berk, L.S. Bernstein, J. Lee, and M. Fox, 2012. Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery, Optical Engineering, 51(11): 111707.   DOI
25 Martins, V.S., C.C.F. Barbosa, L.A.S. De Carvalho, D.S.F. Jorge, F.D.L. Lobo, and E.M.L.M. Novo, 2017. Assessment of atmospheric correction methods for Sentinel-2 MSI images applied to amazon floodplain lakes, Remote Sensing, 9(4): 322.   DOI
26 Miller, C.J., 2002. Performance assessment of ACORN atmospheric correction algorithm, Proc. of SPIE'S Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII, Orlando, FL, Apr. 1-5, vol. 4725, pp. 438-449.
27 Minu, S., A. Shetty, and C. Gomez, 2018. Hybrid atmospheric correction algorithms and evaluation on VNIR/SWIR Hyperion satellite data for soil organic carbon prediction, International Journal of Remote Sensing, 39(22): 8246-8270.   DOI
28 Moran, M.S., R. Bryant, K. Thome, W. Ni, Y. Nouvellon, M.P. Gonzalez-Dugo, J. Qi, and T.R. Clarke, 2001. A refined empirical line approach for reflectance factor retrieval from Landsat-5 TM and Landsat-7 ETM+, Remote Sensing of Environment, 78(1-2): 71-82.   DOI
29 Nazeer, M., J.E. Nichol, and Y.-K. Yung, 2014. Evaluation of atmospheric correction models and Landsat surface reflectance product in an urban coastal environment, International Journal of Remote Sensing, 35(16): 6271-6291.   DOI
30 Pflug, B., M. Main-Knorn, A. Makarau, and R. Richter, 2015. Validation of aerosol estimation in atmospheric correction algorithm ATCOR, Proc. of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Berlin, Germany, May 11-15, vol. XL-7/W3, pp. 677-683.
31 Qu, Z., B.C. Kindel, and A.F.H. Goetz, 2003. The high accuracy atmospheric correction for hyperspectral data (HATCH) model, IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1223-1231.   DOI
32 Smith, G.M. and E.J. Milton, 1999. The use of the empirical line method to calibrate remotely sensed data to reflectance, International Journal of Remote Sensing, 20(13): 2653-2662.   DOI
33 Richter, R. and D. Schlopfer, 2002. Geo-atmospheric processing of airborne imaging spectrometry data, Part 2: Atmospheric/topographic correction, International Journal of Remote Sensing, 23(13): 2631-2649.   DOI
34 Richter, R. and D. Schlopfer, 2018. Atmospheric/topographic correction for satellite imagery (ATCOR-2/3 User Guide) (9.2.0), ReSe Applications LLC, Langeggweg, Switzerland.
35 Richter, R., D. Schlopfer, and A. Muller, 2006. An automatic atmospheric correction algorithm for visible / NIR imagery, International Journal of Remote Sensing, 27(10): 2077-2085.   DOI
36 Roberts, D.A., Y. Yamaguchi, and R.J.P. Lyon, 1986. Comparison of various techniques for calibration of AIS data, Proc. of the 2nd Airborne Imaging Spectrometer Data Analysis Workshop, Pasadena, CA, May 6-8, vol. 86-36, pp. 21-30.
37 San, B.T. and M.L. Suzen, 2010. Evaluation of different atmospheric correction algorithms for EO-1 Hyperion imagery, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, 38(8): 392-397.
38 Anderson, G.P., B. Pukall, C.L. Allred, L.S. Jeong, M. Hoke, J.H. Chetwynd, S. Adler-Golden, A. Berk, L.S. Bernstein, S. Richtsmeier, P.K. Acharya, and M.W. Matthew, 1999. FLAASH and MODTRAN4: state-of-the-art atmospheric correction for hyperspectral data, Proc. of IEEE Aerospace Conference, Aspen, CO, Mar. 7, vol. 4, pp. 177-181.
39 Adler-Golden, S., A. Berk, L.S. Bernstein, S. Richtsmeier, P.K. Acharya, M.W. Matthew, G.P. Anderson, C.L. Allred, L.S. Jeong, and J.H. Chetwynd, 1998. FLAASH, a MODTRAN4 atmospheric correction package for hyperspectral data retrievals and simulations, Proc. of 7th Annual JPL Airborne Earth Science Workshop, Pasadena, CA, Jan. 12-16, vol. 1, pp. 9-14.
40 Adler-Golden, S.M., M.W. Matthew, L.S. Bernstein, R.Y. Levine, A. Berk, S.C. Richtsmeier, P.K. Acharya, G.P. Anderson, G. Felde, J. Gardner, M. Hike, L.S. Jeong, B. Pukall, J. Mello, A. Ratkowski, and H. Burke, 1999. Atmospheric correction for shortwave spectral imagery based on MODTRAN4, Proc. of SPIE'S International symposium on optical science, engineering, and instrumentation, Denver, CO, Jul. 18-23, vol. 3753, pp. 61-69.
41 Ariza, A., M.R. Irizar, and S. Bayer, 2018. Empirical line model for the atmospheric correction of sentinel-2A MSI images in the Caribbean Islands, European Journal of Remote Sensing, 51(1): 765-776.   DOI
42 Bernstein, L.S., S.M. Adler-Golden, R.L. Sundberg, R.Y. Levine, T.C. Perkins, A. Berk, A.J. Ratkowski, and M.L. Hoke, 2004. A new method for atmospheric correction and aerosol optical property retrieval for Vis-SWIR multi- and hyperspectral imaging sensors: QUAC (QUick Atmospheric Correction), Proc. of 13th JPL Airborne Earth Science Workshop, Pasadena, CA, Mar. 31-Apr. 2, vol. 1, pp. 9-20.
43 Aspinall, R.J., W.A. Marcus, and J.W. Boardman, 2002. Considerations in collecting, processing, and analyzing high spatial resolution hyperspectral data for environmental investigations, Journal of Geographical Systems, 4(1): 15-29.   DOI
44 Boardman, J. W., 1998. Post-ATREM polishing of AVIRIS apparent reflectance data using EFFORT: a lesson in accuracy versus precision, Proc. of the 7th JPL Airborne Earth Science Workshop, Pasadena, CA, Jan. 12-16, vol. 1, pp. 1-53.
45 Ayoobi, I. and M.H. Tangestani, 2017. Evaluation of relative atmospheric correction methods on ASTER VNIR-SWIR data in playa environment, Carbonates and Evaporites, 32(4): 539-546.   DOI
46 Ben-Dor, E. and F.A. Kruse, 1994. The relationship between the size of spatial subsets of GER 63 channel scanner data and the quality of the internal average relative reflectance (IARR) atmospheric correction technique, International Journal of Remote Sensing, 15(3): 683-690.   DOI
47 Ben-Dor, E., B. Kindel, and A.F.H. Goetz, 2004. Quality assessment of several methods to recover surface reflectance using synthetic imaging spectroscopy data, Remote Sensing of Environment, 90(3): 389-404.   DOI
48 Berk, A., P. Conforti, R. Kennett, T. Perkins, F. Hawes, and J. van den Bosch, 2014. MODTRAN6: a major upgrade of the MODTRAN radiative transfer code, Proc. of SPIE'S Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX, Baltimore, MD, May 5-9, vol. 9088.
49 Bernstein, L.S., X. Jin, B. Gregor, and S.M. Adler-Golden, 2012. The quick atmospheric correction (QUAC) code: algorithm description and recent upgrades, SPIE Optical Engineering, 51(11): 111719.   DOI
50 Cetin, M., N. Musaoglu, and O.H. Kocal, 2017. A comparison of atmospheric correction methods on hyperion imagery in forest areas, Uludag University Journal of the Faculty of Engineering, 22(1): 103-114.   DOI
51 Clark, R.N. and T.V.V. King, 1987. Causes of spurious features in spectral reflectance data, Proc. of the 3rd Airborne Imaging Spectrometer Data Analysis Workshop, Pasadena, CA, Aug. 15, pp. 132-137.
52 Clark, R.N., G.A. Swayze, K.B. Heidebrecht, R.O. Green, and A.F.H. Goetz, 1995. Calibration of surface reflectance of terrestrial imaging spectrometry data: Comparison of methods, Proc. of the 5th Annual JPL Airborne Earth Science Workshop, Pasadena, CA, Jan. 23-26, vol. 2, pp. 41-42.
53 Conel, J.E., R.O. Green, G. Vane, C.J. Bruegge, and R.E. Alley, 1987. AIS-2 radiometry and a comparison of methods for the recovery of ground reflectance, Proc. of the 3rd Airborne Imaging Spectrometer Data Analysis Workshop, Pasadena, CA, Aug. 15, pp. 18-47.
54 Digital Globe, 2016. Digital Globe Atmospheric Compensation, http://digitalglobe-marketing.s3.amazonaws.com/files/documents/AComp_WP_ACOMP.pdf, Accessed on Nov. 11, 2019.
55 Farrand, W.H., R.B. Singer, and E. Merenyi, 1994. Retrieval of apparent surface reflectance from AVIRIS data: A comparison of empirical line, radiative transfer, and spectral mixture methods, Remote Sensing of Environment, 47(3): 311-321.   DOI
56 Gao, B.-C. and C.O. Davis, 1997. Development of a line-by-line-based atmosphere removal algorithm for airborne and spaceborne imaging spectrometers, Proc. of SPIE'S Imaging Spectrometry III, San Diego, CA, Jul. 27- Aug. 1, vol. 3118, pp. 132-141.