• Title/Summary/Keyword: Remote power management

Search Result 182, Processing Time 0.03 seconds

Development of Remote Control System for Power Plant (전력설비의 원격관리 시스템의 개발)

  • Kwak, Dong-Hyun;Oh, Jung-Eon;Yoon, Jae-Shik;Kim, Beung-Jin;Jeon, Hee-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1315-1317
    • /
    • 2000
  • In this paper, a solution of remote manager system for power plant was introduced. In conventional remote control system computer or adapter are need to communicate with manager computer. As the number of managed power installations increases, the remote management system is going to be complicated and expensive. To solve the problem, a Multi-functional Board for power plant is developed. The Multi-functional Board has a both function of remote management and communication in LAN. This system will be hope to decrease the cost of remote management.

  • PDF

A Study on Development of Internet Based Power Management System Using a Microprocessor (마이크로프로세서를 이용한 인터넷기반 전력관리시스템 개발에 관한 연구)

  • 천행춘
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.746-753
    • /
    • 2004
  • In this paper, the Power Management System(PMS) which based on a decision making system according to power strategy is proposed and implemented. PMS is designed to have functions of power monitoring. controlling, synchronizing load sharing and monitoring of driving engine, etc. PMS consists of the internet communication system(ICS). Remote Management System(RMS) and Sensor Driver System (SDS) ICS transmits the monitoring and supervisory data via Internet to Remote Management System(RMS) in real-time SDS detects various power system data on local generator and utility via I/O interface system. I/O interface system receives various status data and outputs control signals. Implemented PMS is tested with dummy signal to verify proposed functions and shows good results. For future study implemented PMS will be tested under real load condition to merchandize.

Distribution Remote Management System Design and Program Development Based on ADWHM(Advanced Digital Watt-Hour Meter) (차세대 디지털 적산전력계에 기반한 배전원격관리시스템 설계 및 프로그램 개발)

  • Ha Bok-Nam;Ko Yun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.4
    • /
    • pp.185-192
    • /
    • 2005
  • This paper proposes a DRMS(Distribution Remote Management System) which can enhance highly the economics of automatic metering system and the power quality supplied to the electric customer improving the efficiency of the meter reading, voltage management and load management work by realizing the remote meter reading, the remote voltage management and the remote load management based on the ADWHM(Advanced Digital Watt Hour Meter). The DRMS is designed so that the voltage management and load management work in remote site can be processed by collecting the voltage pattern and current pattern as well as watt hour data from all ADWHMs one time every month regularly or from special ADWHMS several time irregularly, A new on-line voltage and load management strategy based on the ADWHM is designed by analyzing the existing voltage management and load management process. Also, DRMS is designed so that watt-hour data, voltage pattern data, load pattern data and power factor data can be collected selectively according to the selection of user to assist effectively the methodology. Remote management program and database of the DRMS are implemented based on Visual C++, MFC and database library of MS. Also, DRMS is designed so as to communicate with the ADWHM using RS232C-TCP/IP converter and ADSL. The effectiveness of the remote metering function is proven by collecting and analyzing the data after ADWHMs installed in any site. The developed strategy and program also is verified through the simulation of voltage management and load management.

Assessment of Earth Remote Sensing Microsatellite Power Subsystem Capability during Detumbling and Nominal Modes

  • Zahran M.;Okasha M.;Ivanova Galina A.
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.18-28
    • /
    • 2006
  • The Electric Power Subsystem (EPS) is one of the most critical systems on any satellite because nearly every subsystem requires power. This makes the choice of power systems the most important task facing satellite designers. The main purpose of the Satellite EPS is to provide continuous, regulated and conditioned power to all the satellite subsystems. It has to withstand radiation, thermal cycling and vacuums in hostile space environments, as well as subsystem degradation over time. The EPS power characteristics are determined by both the parameters of the system itself and by the satellite orbit. After satellite separation from the launch vehicle (LV) to its orbit, in almost all situations, the satellite subsystems (attitude determination and control, communication and onboard computer and data handling (OBC&DH)), take their needed power from a storage battery (SB) and solar arrays (SA) besides the consumed power in the EPS management device. At this point (separation point, detumbling mode), the satellite's angular motion is high and the orientation of the solar arrays, with respect to the Sun, will change in a non-uniform way, so the amount of power generated by the solar arrays will be affected. The objective of this research is to select satellite EPS component types, to estimate solar array illumination parameters and to determine the efficiency of solar arrays during both detumbling and normal operation modes.

Remote Power Management System for Large Scale PC Network (대규모 PC 네트워크의 원격 전원 관리 시스템)

  • Hwang, Kitae;Lee, Jae Moon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.71-78
    • /
    • 2015
  • Since most education organizations such as Universities have a plenty of PCs, much electric power can be wasted if their power states are not managed properly. This paper introduces the RPM(Remote Power Management) software system implemented to reduce a waste of PC power in Universities. The System manager can monitor power state of all PCs in a University and turn off PCs or change power states of PCs to low power states. The RPM consists of three software modules. First, Power Controller, which is installed in each user PC, saves the power by changing low power state by utilizing low power algorithm proposed in this paper. Also it reports power state of its PC to Power Server on the state changed. Second, Power Server module gathers power state information of all PCs, stores them in a DB, and sends all or some parts of the information to Power Viewer whenever the manager asks. The manager can turn off or change a certain PC to low power state. We evaluated the performance of power saving for the RPM and the result showed achievement of 40% power saving.

Development of SNMP Management System for Remote Control of Power Plants Using Micro-Controller (마이크로컨트롤러를 이용한 전력설비의 원격제어를 위한 SNMP 관리시스템 개발)

  • Shim, Woo-Hyuk;Yoon, Jae-Shik;Kim, Beung-Jin;Lim, Byung-Kuk;Jeon, Hee-Jong
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.649-651
    • /
    • 1999
  • This paper presents SNMP remote management system for power plants using micro-controller. Control board supporting LAN-based remote monitor and control is produced and MMI program on PC is also constructed. To expand into Internet, SNMP(Simple Network Management Protocol), the standard network management protocol of TCP/IP protocol suite, is ported to this control board consisted of micro-controller, 80c196KC, and LAN controller, Am7990DC. To overcome the constraints of CPU performance and memory capacity, TCP/P protocol suite is simplified and informations needed to management were implemented in accordance with MIB(Management Information Base) specified in RFC. Also monitoring software is constructed by Visual Basic.

  • PDF

Development target of intelligent DAS with the function of distribution transformer monitoring (배전변압기 감시제어 기능이 통합된 지능형 배전자동화 시스템 개발 방향)

  • Ha, Bok-Nam;Seol, Lee-Ho;Park, Shin-Yeol;Jeong, Yeong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.554-556
    • /
    • 2005
  • Distribution Automation System (DAS) will provide supervision and remote control of switches and reclosers such as pole pounted switches and pad-mounted switchgears on high voltage distribution line. Kepco had developed basic function such as remote monitoring, remote control, remote measuring and remote setting at first. As a next step, Kepco has been developed diverse application programs such as single line diagram drawing program, relay coordination program, feeder reconfiguration program, over load elimination program, bad data detection program, section load management program, fault processing program and so on. Kepco is examining to develop more powerful functions for special specification of foreign distribution automation system. This paper explains what is the target for overseas DAS market.

  • PDF

A Study on Development of Remote Management Controller for Intelligent Power Equipment (지능형 전원설비의 원격관리제어기 개발에 관한 연구)

  • Lim, Byung-Kuk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.1
    • /
    • pp.79-86
    • /
    • 2006
  • In this study, we research and develope Intelligent Remote management controller. According to the load condition, we will apply various control techniques and plan high efficient Demand control. After development, According to the Demand Control, An electricity enterprisers will expect enlargement of equipment coefficient, elevation of back up load factor and reduction effect of equipment investment. On Customer side, They will expect reduction of electric fee, saving energy and variety of service choice.

  • PDF

Design of a Remote Meter Reading module considering battery life time (배터리 수명을 고려한 원격검침 모듈 설계)

  • Jeong, Won-Chang;Gu, Myeong-Mo;Jang, Sung-Joo;Kim, Sang-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.4
    • /
    • pp.45-50
    • /
    • 2008
  • Meter reading modules, which read the meter and transmit the data to water management offices, can't use the electric wires for their power supply. Therefore, batteries have to be used for meter reading modules and that cause maintenance problems like periodic batteries replacement. To save the maintenance cost, a wireless transmitting solution with less power consumption is required. In This paper, we designed a remote meter reading module, which reads meter automatically with less power consumption of battery by effective management of power source and transmits the reading data using RF.

  • PDF

A development of direct load control system for air-conditioner (원격제어 에어컨 개발 보급현황 및 향후전망)

  • Gang, Won-Gu;Kim, Choong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2446-2448
    • /
    • 2001
  • In addition to the stabilization of electricity supply and the quality management of electricity, load balance has been an important strategy for achieving high quality load management. Among many techniques for load management, direct load management has been actively studied and applied for increasing the efficiency of power facility and suppressing peak load. In Korea, the highest peak load is demanded in summer rather than in winter, and almost 50% of the peak load comes from cooling load. Currently, applicable systems are limited to air conditioners that have the cooling capacity less than 2kW. This paper describes the development of remote controlled air conditioners and the result of the field test of the new type air conditioner. The technical specification based on the test will be applied to the new model of the remote controlled air conditioner. The wide distribution of the air conditioners to the public will be helpful to control peak demand due to cooling load in summer time. Financial investment to generating, transmission, distribution facilities will be decreased from flatting the seasonal power load.

  • PDF