• Title/Summary/Keyword: Remote plasma nitride oxide

Search Result 2, Processing Time 0.016 seconds

Dependence of Low-frequency Noise and Device Characteristics on Initial Oxidation Method of Plasma-nitride Oxide for Nano-scale CMOSFET (Nano-CMOSFET를 위한 플라즈마-질화막의 초기 산화막 성장방법에 따른 소자 특성과 저주파 잡음 특성 분석)

  • Joo, Han-Soo;Han, In-Shik;Goo, Tae-Gyu;Yoo, Ook-Sang;Choi, Won-Ho;Choi, Myoung-Gyu;Lee, Ga-Won;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • In this paper, two kinds of initial oxidation methods i.e., SLTO(Slow Low Temperature Oxidation: $700^{\circ}C$) and RTO(Rapid Thermal Oxidation: $850^{\circ}C$) are applied prior to the plasma nitridation for ultra thin oxide of RPNO (Remote Plasma Nitrided Oxide). It is observed that SLTO has superior characteristics to RTO such as lower SS(Sub-threshold Slope) and improved Ion-Ioff characteristics. Low frequency noise characteristics of SLTO also showed better than RTO both in linear and saturation regime. It is shown that flicker noise is dominated by carrier number fluctuation in the channel region. Therefore, SLTO is promising for nano-scale CMOS technology with ultra thin gate oxide.

Effects of $N_2$ addition on chemical etching of silicon nitride layers in $F_2/Ar/N_2$ remote plasma processing

  • Park, S.M.;Kim, H.W.;Kim, S.I.;Yun, Y.B.;Lee, N.E.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.78-79
    • /
    • 2007
  • In this study, chemical dry characteristics of silicon nitride layers were investigated in the $F_2/N_2/Ar$ remote plasma. A toroidal-type remote plasma source was used for the generation of remote plasmas. The effects of additive $N_2$ gas on the etch rates of various silicon nitride layers deposited using different deposition techniques and precursors were investigated by varying the various process parameters, such as the $F_2$ flow rate, the addition $N_2$ flow rate and the substrate temperature. The etch rates of the various silicon nitride layers at the room temperature were initially increased and then decreased with the $N_2$ flow increased, which indicates an existence of the maximum etch rates. The etch rates of the silicon oxide layers were also significantly increased with the substrate temperature increased. In the present experiments the $F_2$ gas flow, addition $N_2$ flow rate and the substrate temperature were found to be the critical parameters in determining the etch rate of the silicon nitride layers

  • PDF