• Title/Summary/Keyword: Remote detection

Search Result 1,128, Processing Time 0.032 seconds

Analysis Method for Full-length LiDAR Waveforms (라이다 파장 분석 방법론에 대한 연구)

  • Jung, Myung-Hee;Yun, Eui-Jung;Kim, Cheon-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.4 s.316
    • /
    • pp.28-35
    • /
    • 2007
  • Airbone laser altimeters have been utilized for 3D topographic mapping of the earth, moon, and planets with high resolution and accuracy, which is a rapidly growing remote sensing technique that measures the round-trip time emitted laser pulse to determine the topography. The traveling time from the laser scanner to the Earth's surface and back is directly related to the distance of the sensor to the ground. When there are several objects within the travel path of the laser pulse, the reflected laser pluses are distorted by surface variation within the footprint, generating multiple echoes because each target transforms the emitted pulse. The shapes of the received waveforms also contain important information about surface roughness, slope and reflectivity. Waveform processing algorithms parameterize and model the return signal resulting from the interaction of the transmitted laser pulse with the surface. Each of the multiple targets within the footprint can be identified. Assuming each response is gaussian, returns are modeled as a mixture gaussian distribution. Then, the parameters of the model are estimated by LMS Method or EM algorithm However, each response actually shows the skewness in the right side with the slowly decaying tail. For the application to require more accurate analysis, the tail information is to be quantified by an approach to decompose the tail. One method to handle with this problem is proposed in this study.

Applicability for Detecting Trails by Using KOMPSAT Imagery (등산로 탐지를 위한 KOMPSAT 영상의 활용가능성)

  • Bae, Jinsu;Yim, Jongseo;Shin, Young Ho
    • Journal of the Korean Geographical Society
    • /
    • v.50 no.6
    • /
    • pp.607-619
    • /
    • 2015
  • It is important to detect trails accurately for finding a proper management. We examined the applicability of KOMPSAT imagery to detect trails and found that it could be an efficient alternative to track trails correctly. We selected K2 and K3 imagery with different spatial resolution. Then, we processed each imagery to get NDVI, SAVI, and SC data. And then, we identified trails by object-based analysis and network analysis. Finally, we evaluated the potential trails with F-measurement and Jaccard coefficient which are based on correctness and completeness. The results show that the applicability is quite different in each case. Among them, especially the SC data with K3 shows the most highest value; correctness of detecting legal trails is 0.44 and completeness of that is 0.54. F-measurement and Jaccard coefficient are 0.49 and 0.32. In general, although there is a limit in detecting trails by using only KOMPSAT imagery, the usefulness of KOMPSAT imagery can be a higher considering its cost efficiency and availability of acquiring periodic data.

  • PDF

ICT based Wireless Power Transmission System Development (ICT 기반의 무선전력전송 시스템 개발)

  • Lee, Jong-Hee;Bang, Junho;Chun, Hyun-Jun;Seo, Beom-Geun;Ryu, In-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.67-73
    • /
    • 2016
  • Recently, wireless power transmission has attracted much interest and is the subject of much research in industry and academia. As its name implies, it is a technology which involves transferring power without wires. This paper presents the design of an ICT-based wireless power transmission system. The proposed system consists of a wireless transceiver unit and high-efficiency coil unit, which can increase both the transmission efficiency and the effective power distance. In particular, the wireless transceiver unit was designed to work with the ICT technique to enable real-time remote monitoring. Also, studies were done relating to the effect of reducing the standby power. The optimal frequency of IGBT devices used in industrial wireless power systems of 20[KHz] was utilized. The values of $23.9[{\mu}H]$ and $2.64[{\mu}F]$ were selected for L and C, respectively, through many field experiments designed to optimize the system design. In addition, an output current controlling algorithm was developed for the purpose of reducing the standby power. The results presented in this paper represent a 75[%] to 85[%] higher power transmission efficiency with a 10[%] increase in the effective power transmission distance compared with the existing systems. As a result, the proposed system exhibits a lower standby power and maintenance costs. Also, the designed wireless transceiver unit facilitates fault detection by means of user acquired data with the development of the ICT applied program.

Efficient Multi-spot Monitoring System Using PTZ Camera and Wireless Sensor Network (PTZ 카메라와 무선 센서 네트워크를 이용한 효율적인 다중 지역 절전형 모니터링 시스템)

  • Seo, Dong-kyu;Son, Cheol-su;Yang, Su-yeong;Cho, Byung-lok;Kim, Won-jung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.581-584
    • /
    • 2009
  • Recently, the cameras which used for observation are installed in children protection area and local crime prevention area in order to protect life and property and by its work being recognized and are installed more. Normal cameras have cost problem to observe multiple area and detail, because they can observe only one place. PTZ camera can observe multiple area by moving focus by schedule or remote control, but it can't automatically move the focus of it to the place where event occurred, because it can't recognize the place. In this study, we can monitor multiple area effectively, by installing a wireless sensor node equipped with temperature, lighting, gas and human detection sensor to each area, to monitor many place low-price and actively and to move the focus of PTZ camera to preset position, and send recorded video to the user, when the various sensor data received from wireless sensors in observation area are to be determined abnormal by analyzing. In addition, at night we can record a scene using infrared, but to reduce power consumption of lighting system which are installed to improve resolution, it supplies power to the lighting system when event occurred. So we were able to implement low power green monitoring system.

  • PDF

Accuracy Assessment of the Satellite-based IMERG's Monthly Rainfall Data in the Inland Region of Korea (한반도 육상지역에서의 위성기반 IMERG 월 강수 관측 자료의 정확도 평가)

  • Ryu, Sumin;Hong, Sungwook
    • Journal of the Korean earth science society
    • /
    • v.39 no.6
    • /
    • pp.533-544
    • /
    • 2018
  • Rainfall is one of the most important meteorological variables in meteorology, agriculture, hydrology, natural disaster, construction, and architecture. Recently, satellite remote sensing is essential to the accurate detection, estimation, and prediction of rainfall. In this study, the accuracy of Integrated Multi-satellite Retrievals for GPM (IMERG) product, a composite rainfall information based on Global Precipitation Measurement (GPM) satellite was evaluated with ground observation data in the inland of Korea. The Automatic Weather Station (AWS)-based rainfall measurement data were used for validation. The IMERG and AWS rainfall data were collocated and compared during one year from January 1, 2016 to December 31, 2016. The coastal regions and islands were also evaluated irrespective of the well-known uncertainty of satellite-based rainfall data. Consequently, the IMERG data showed a high correlation (0.95) and low error statistics of Bias (15.08 mm/mon) and RMSE (30.32 mm/mon) in comparison to AWS observations. In coastal regions and islands, the IMERG data have a high correlation more than 0.7 as well as inland regions, and the reliability of IMERG data was verified as rainfall data.

Detection of the Coastal Wetlands Using the Sentinel-2 Satellite Image and the SRTM DEM Acquired in Gomsoman Bay, West Coasts of South Korea (Sentinel-2 위성영상과 SRTM DEM을 활용한 연안습지 탐지: 서해안 곰소만을 사례로)

  • CHOUNG, Yun-Jae;KIM, Kyoung-Seop;PARK, Insun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.2
    • /
    • pp.52-63
    • /
    • 2021
  • In previous research, the coastal wetlands were detected by using the vegetation indices or land cover classification maps derived from the multispectral bands of the satellite or aerial imagery, and this approach caused the various limitations for detecting the coastal wetlands with high accuracy due to the difficulty of acquiring both land cover and topographic information by using the single remote sensing data. This research suggested the efficient methodology for detecting the coastal wetlands using the sentinel-2 satellite image and SRTM(Shuttle Radar Topography Mission) DEM (Digital Elevation Model) acquired in Gomsoman Bay, west coasts of South Korea through the following steps. First, the NDWI(Normalized Difference Water Index) image was generated using the green and near-infrared bands of the given Sentinel-2 satellite image. Then, the binary image that separating lands and waters was generated from the NDWI image based on the pixel intensity value 0.2 as the threshold and the other binary image that separating the upper sea level areas and the under sea level areas was generated from the SRTM DEM based on the pixel intensity value 0 as the threshold. Finally, the coastal wetland map was generated by overlaying analysis of these binary images. The generated coastal wetland map had the 94% overall accuracy. In addition, the other types of wetlands such as inland wetlands or mountain wetlands were not detected in the generated coastal wetland map, which means that the generated coastal wetland map can be used for the coastal wetland management tasks.

Detection of Drought Stress in Soybean Plants using RGB-based Vegetation Indices (RGB 작물 생육지수를 활용한 콩 한발 스트레스 판별기술 평가)

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Baek, Jae-Kyeong;Kwon, Dongwon;Ban, Ho-Young;Cho, Jung-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.340-348
    • /
    • 2021
  • Continuous monitoring of RGB (Red, Green, Blue) vegetation indices is important to apply remote sensing technology for the estimation of crop growth. In this study, we evaluated the performance of eight vegetation indices derived from soybean RGB images with various agronomic parameters under drought stress condition. Drought stress influenced the behavior of various RGB vegetation indices related soybean canopy architecture and leaf color. In particular, reported vegetation indices such as ExGR (Excessive green index minus excess red index), Ipca (Principal Component Analysis Index), NGRDI (Normalized Green Red Difference Index), VARI (Visible Atmospherically Resistance Index), SAVI (Soil Adjusted Vegetation Index) were effective tools in obtaining canopy coverage and leaf chlorophyll content in soybean field. In addition, the RGB vegetation indices related to leaf color responded more sensitively to drought stress than those related to canopy coverage. The PLS-DA (Partial Squares-Discriminant Analysis) results showed that the separation of RGB vegetation indices was distinct by drought stress. The results, yet preliminary, display the potential of applying vegetation indices based on RGB images as a tool for monitoring crop environmental stress.

Road Extraction from Images Using Semantic Segmentation Algorithm (영상 기반 Semantic Segmentation 알고리즘을 이용한 도로 추출)

  • Oh, Haeng Yeol;Jeon, Seung Bae;Kim, Geon;Jeong, Myeong-Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.239-247
    • /
    • 2022
  • Cities are becoming more complex due to rapid industrialization and population growth in modern times. In particular, urban areas are rapidly changing due to housing site development, reconstruction, and demolition. Thus accurate road information is necessary for various purposes, such as High Definition Map for autonomous car driving. In the case of the Republic of Korea, accurate spatial information can be generated by making a map through the existing map production process. However, targeting a large area is limited due to time and money. Road, one of the map elements, is a hub and essential means of transportation that provides many different resources for human civilization. Therefore, it is essential to update road information accurately and quickly. This study uses Semantic Segmentation algorithms Such as LinkNet, D-LinkNet, and NL-LinkNet to extract roads from drone images and then apply hyperparameter optimization to models with the highest performance. As a result, the LinkNet model using pre-trained ResNet-34 as the encoder achieved 85.125 mIoU. Subsequent studies should focus on comparing the results of this study with those of studies using state-of-the-art object detection algorithms or semi-supervised learning-based Semantic Segmentation techniques. The results of this study can be applied to improve the speed of the existing map update process.

A Study on the remote acuisition of HejHome Air Cloud artifacts (스마트 홈 헤이 홈 Air의 클라우드 아티팩트 원격 수집 방안 연구)

  • Kim, Ju-eun;Seo, Seung-hee;Cha, Hae-seong;Kim, Yeok;Lee, Chang-hoon
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.69-78
    • /
    • 2022
  • As the use of Internet of Things (IoT) devices has expanded, digital forensics coverage of the National Police Agency has expanded to smart home areas. Accordingly, most of the existing studies conducted to acquire smart home platform data were mainly conducted to analyze local data of mobile devices and analyze network perspectives. However, meaningful data for evidence analysis is mainly stored on cloud storage on smart home platforms. Therefore, in this paper, we study how to acquire stored in the cloud in a Hey Home Air environment by extracting accessToken of user accounts through a cookie database of browsers such as Microsoft Edge, Google Chrome, Mozilia Firefox, and Opera, which are recorded on a PC when users use the Hey Home app-based "Hey Home Square" service. In this paper, the it was configured with smart temperature and humidity sensors, smart door sensors, and smart motion sensors, and artifacts such as temperature and humidity data by date and place, device list used, and motion detection records were collected. Information such as temperature and humidity at the time of the incident can be seen from the results of the artifact analysis and can be used in the forensic investigation process. In addition, the cloud data acquisition method using OpenAPI proposed in this paper excludes the possibility of modulation during the data collection process and uses the API method, so it follows the principle of integrity and reproducibility, which are the principles of digital forensics.

Changes in the Riverbed Landforms Due to the Artificial Regulation of Water Level in the Yeongsan River (인위적인 보 수위조절로 인한 영산강 하도 지형 변화)

  • Lim, Young Shin;Kim, Jin Kwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-19
    • /
    • 2020
  • A river bed which is submerged in water at high flow and becomes part of the river at low flow, serves as a bridge between the river and the land. The channel bar creates a unique ecosystem with vegetation adapted to the particular environment and the water pool forms a wetland that plays a very important role in the environment. To evaluate anthropogenic impacts on the river bed in the Middle Yeongsangang River, the fluvial landforms in the stream channel were analyzed using multi-temporal remotely-sensed images. In the aerial photograph of 2005 taken before the construction of the large weirs, oxbow lakes, mid-channel bars, point bars, and natural wetlands between the artificial levees were identified. Multiple bars divided the flow of stream water to cause the braided pattern in a particular section. After the construction of the Seungchon weir, aerial photographs of 2013 and 2015 revealed that most of the fluvial landforms disappeared due to the dredging of its riverbed and water level control(maintenance at 7.5El.m). Sentinel-2 images were analyzed to identify differences between before and after the opening of weir gate. Change detection was performed with the near infrared and shortwave infrared spectral bands to effectively distinguish water surfaces from land. As a result, water surface area of the main stream of the Yeongsangang River decreased by 40% from 1.144km2 to 0.692km2. A large mid-channel bar that has been deposited upstream of the weir was exposed during low water levels, which shows the obvious influence of weir on the river bed. Newly formed unvegetated point bars that were deposited on the inside of a meander bend were identified from the remotely sensed images. As the maintenance period of the weir gate opening was extended, various habitats were created by creating pools and riffles around the channel bars. Considering the ecological and hydrological functions of the river bed, it is expected that the increase in bar areas through weir gate opening will reduce the artificial interference effect of the weir.