• Title/Summary/Keyword: Remote command control

Search Result 100, Processing Time 0.026 seconds

Implementation of Data Storage Media Control and Command(DSM-CC) Core User-to-User Interface for MPEG-2 Bit Stream Transport

  • Park, Seong-Jong;Kim, Yong-Han;Kim, Jae-Woo;Lee, Ho-Jang;Shim, Jae-Kyu;Kim, Jae-D.;Koh, Jong-Seong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06b
    • /
    • pp.79-84
    • /
    • 1998
  • This paper describes implementation of the core DSM-CC UU interface. It briefly describes the reference model for the DSM-CC and related standards that should be reviewed for the implementation. The Common Object Request Broker Architechture, Revision 2.0 (CORBA 2.0) is sued as a remote procedure call (RPC) scheme for the UU Interface. Entire system was implemented with C++ on Windows NT platforms. The implementation procedure has been decomposed ito two tasks. The first task is to implement the Naming Service for service navigation. The Naming Service is one of the CORBA Services that extend the core CORBA specification. A client GUI is implemented for easy navigation among various services. The second task is to construct multimedia server and client for a Video-on-Demand (VoD) system. MPEG-2 Transport Stream is transported via ATM AAL5 using the Windows Socket 2.2 ATM extension API. A GUI enables the user to navigate the service domain and select a program. After the selection the user can control the MPEG-2 stream with VCR-like buttons.

  • PDF

Distributed IoT Sensor based Laboratory Safety Management System (분산 IoT센서 기반 실험실 안전관리 시스템)

  • Jeong, Daejin;Kim, Jaeyoon;Bae, Sangjung;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.1
    • /
    • pp.90-96
    • /
    • 2019
  • Storage cabinet in a lab in these days measures various environmental factors in real-time with IoT sensors. Preexisting system collects sensor data, analyze a risk and then command other equipment. Such centralized control system tends to have an issue with of speed slowing down. It's because when there are more storage cabinets, there are more data to process. In order to solve this issue, this report addresses decentralized IoT sensor based lab safety control system. It can analyze internal state of storage cabinet to identify any hazardous situations and effectively control them. Such decentralized control system using sensor modules for internal environment of the cabinet storage and automated control algorithm based on administrator's log history can manage any hazardous situations by automated control of environment factors of inside a lab. It would allow users to deal with a hazard if it happens. Even better, it can prevent it to happen from the beginning.

Development of Test Equipment for KSLV-I Upper Stage (KSLV-I 상단부 시험장비(UTE) 설계 및 개발)

  • Kim, Kwang-Soo;Lee, Soo-Jin;Chung, Eui-Seung;Park, Jeong-Joo
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.171-179
    • /
    • 2007
  • The Test Equipment for the upper stage of KSLV-I has following functions via umbilical cable interface; external power supply, command output such as discrete and analog, data acquisition, CS-I interface simulation for first stage of KSLV-I and RS-422 serial communication for PDU. The main purpose of UTE is the experiment or function verification of system-level upper stage. To realize this system, we used PXI control system. The UTE is consisted of the PXI control system, power supply, terminal block, internal harness, connector panel and so on. The software functions of UTE are classified by four blocks. These are Discrete/Analog I/O control, PDU RS-422 serial communication control, power supply GPIB control and UTE remote control. In this paper, we will describe the design on the hardware and software of UTE.

  • PDF

Joystick Control Algorithm for Berthing and Unberthing of Waterjet Propelled Unmanned Surface Vehicle Using Actuator Nonlinear Model (구동기 비선형 모델을 이용한 워터제트 추진 무인수상정의 조이스틱기반 이접안 제어 알고리즘)

  • Seong-Jin Ahn;Mooncheol Won;Sun Young Kim;Hansol Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.165-174
    • /
    • 2023
  • Unmanned Surface Vehicle (USV)'s berthing and unberthing is the most difficult maneuvering tasks and have the highest risk of accidents. In this paper, we designed a berthing/unberthing control algorithm given human joystick command for an USV equipped with a waterjet and a bow thruster. The berthing and unberthing maneuvers are performed remotely by a joystick operator at the Ground Control Center (GCC) where the status of USV and environmental situation can be monitored. We interpret the human joystick commands into USV's desired speed, yaw rate, and heading angle commands. next, we developed a control algorithm for the desired target values of MIMO actuators (engine speed, bucket step, nozzle angle, and bow thruster state) to follow the interpreted commands. The validity of the control algorithm is confirmed through simulations and sea trials at Gwang Am port.

The real-time Traffic Monitoring System Design for the in-service of ATM Network (ATM망의 서비스 회선에 대한 실시간 트래픽 모니터링 시스템 설계)

  • 정승국;이영훈
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.3
    • /
    • pp.115-121
    • /
    • 2002
  • This paper discussed to design system to overcome time, place and service limitation in the case of extracting traffic on active service in the ATM network. There are several specification in this system : for a remote control function, a real-time traffic extraction from ATM link on service without affect in-service, and an O&M(Operating and Maintenance) cost down effect. This paper include the requirement, module structure, operating characteristics and command for the developing function. This product installed at the KT's telephone office. And we have tested the stability, reliability and functionality. As the result, it was verified that this system commercially is abel to use without especial problem. Hereafter, we are improving module structure for the cost down.

  • PDF

Design and Implementation of Surveillance and Combat Robot Using Smart Phone (스마트폰을 이용한 정찰 및 전투 로봇의 설계와 구현)

  • Kim, Do-Hyun;Park, Young-Sik;Kwon, Sung-Gab;Yang, Yeong-Yil
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.93-98
    • /
    • 2011
  • In this paper, we propose the surveillance and combat robot framework for remote monitoring and robot control on the smart phone, which is implemented with the fusion technology called RITS(Robot technology & Information Technology System). In our implemented system, the camera phone mounted on the robot generates signals to control the robot and sends images to the smart phone of the operator. Therefore, we can monitor the surrounding area of the robot with the smart phone. Besides the control of the movement of the robot, we can fire the weapons armed on the robot by sending the fire command. From experimental results, we can conclude that it's possible to control the robot and monitor the surrounding area of the robot and fire the weapons in real time in the region where the 3G(Generation) mobile communication is possible. In addition, we controlled the robot using the 2G mobile communication or wired phone when the robot is in the visual range.

A study on the hybrid communication system to remove the communication shadow area for controller system of navigational aids (전파 음영지역 해소를 위한 항로표지관리용 하이브리드 통신 시스템에 관한 연구)

  • Jeon, Joong Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.409-417
    • /
    • 2013
  • Mu-communication board supported by multi-communication is designed with Atxmega 128A1 which is a low power energy consuming of 8-bit microcontroller. ATxmega128A1 microcontroller consists of 8 UART(Universal asynchronous receiver/transmitter) ports which can be setting appropriate user interface having command line interpreter(CLI) program with each port, 2 kbytes EEPROM, 128 kbytes flash memory, 8 kbytes SRAM. 8 URAT ports are used for the multi communication modem, GPS module, etc. and EEPROM is used for saving a configuration for program running, and flash memory of 128 kbytes is used for storing a Firm Ware, and 8 kbytes SRAM is used for stack, storing memory of global variables while program running. If we uses the hybrid communication of path optimization of VHF, TRS and CDMA to remote control AtoN(aid to navigation), it is able to remove the communication shadow area. Even though there is a shadow area for individual communication method, we can select an optimum communication method. The compatibility of data has been enhanced as using of same data frame per communication devices. For the test, 8640 of data has been collected from the each buoy during 30 days in every 5 minutes and the receiving rate of the data has shown more than 99.4 %.

Automation of Bio-Industrial Process Via Tele-Task Command(I) -identification and 3D coordinate extraction of object- (원격작업 지시를 이용한 생물산업공정의 생력화 (I) -대상체 인식 및 3차원 좌표 추출-)

  • Kim, S. C.;Choi, D. Y.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.1
    • /
    • pp.21-28
    • /
    • 2001
  • Major deficiencies of current automation scheme including various robots for bioproduction include the lack of task adaptability and real time processing, low job performance for diverse tasks, and the lack of robustness of take results, high system cost, failure of the credit from the operator, and so on. This paper proposed a scheme that could solve the current limitation of task abilities of conventional computer controlled automatic system. The proposed scheme is the man-machine hybrid automation via tele-operation which can handle various bioproduction processes. And it was classified into two categories. One category was the efficient task sharing between operator and CCM(computer controlled machine). The other was the efficient interface between operator and CCM. To realize the proposed concept, task of the object identification and extraction of 3D coordinate of an object was selected. 3D coordinate information was obtained from camera calibration using camera as a measurement device. Two stereo images were obtained by moving a camera certain distance in horizontal direction normal to focal axis and by acquiring two images at different locations. Transformation matrix for camera calibration was obtained via least square error approach using specified 6 known pairs of data points in 2D image and 3D world space. 3D world coordinate was obtained from two sets of image pixel coordinates of both camera images with calibrated transformation matrix. As an interface system between operator and CCM, a touch pad screen mounted on the monitor and remotely captured imaging system were used. Object indication was done by the operator’s finger touch to the captured image using the touch pad screen. A certain size of local image processing area was specified after the touch was made. And image processing was performed with the specified local area to extract desired features of the object. An MS Windows based interface software was developed using Visual C++6.0. The software was developed with four modules such as remote image acquisiton module, task command module, local image processing module and 3D coordinate extraction module. Proposed scheme shoed the feasibility of real time processing, robust and precise object identification, and adaptability of various job and environments though selected sample tasks.

  • PDF

Feasibility of Using Norad Orbital Elements for Pass Programming and Catalog Generation for High Resolution Satellite Images (고해상도 위성영상 촬영계획 수립 및 카탈로그 생성을 위한 NORAD 궤도 데이터의 이용 가능성 연구)

  • 신동석;김탁곤;곽성희;이영란
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.119-130
    • /
    • 1999
  • At present, many ground stations all over the world are using NORAD orbit element data in order to track and communicate with Earth orbiting satellites. The North American Aerospace Defense Command (NORAD) observes thousands of Earth orbiting objects on daily basis and provides their orbital information via internet. The orbital data provided by NORAD, which is also called two line element (TLE) sets, allows ground stations to predict the time-varying positions of satellites accurately enough to communicate with the satellites. In order to complete the mission of a high resolution remote sensing satellite which requires very high positional determination and control accuracy, however, a mission control and tracking ground station is dedicated for the observation and positional determination of the satellite rather than using NORAD orbital sets. In the case of KITSAT-3, NORAD orbital elements are currently used for image acquisition planning and for the processing of acquired images due to the absence of a dedicated KITSAT-3 tracking ground system. In this paper, we tested and analyzed the accuracy of NORAD orbital elements and the appropriate prediction model to determine how accurately a satellite acquisites an image of the location of interest and how accurately a ground processing system can generate the catalog of the images.

Dynamic Modeling based Flight Control of Hexa-Rotor Helicopter System (헥사로터형 헬리콥터의 동역학 모델기반 비행제어)

  • Han, Jae-Gyun;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.398-404
    • /
    • 2015
  • In this paper, we describe the design and performance of a prototype multi-rotor unmaned aerial vehicle( UAV) platform featuring an inertial measurement unit(IMU) based autonomous-flying for use in bluetooth communication environments. Although there has been a fair amount of study of free-flying UAV with multi-rotors, the more recent trend has been to outfit hexarotor helicopter with gimbal to support various services. This paper introduces the hardware and software systems toward very compact and autonomous hexarotors, where they can perform search, rescue, and surveillance missions without external assistance systems like ground station computers, high-performance remote control devices or vision system. The proposed system comprises the construction of the test hexarotor platform, the implementation of an IMU, mathematical modeling and simulation in the helicopter. Furthermore, the hexarotor helicopter with implemented IMU is connected with a micro controller unit(MCU)(ARM-cortex) board. The micro-controller is able to command the rotational speed of the rotors and to get the measurements of the IMU as input signals. The control simulation and experiment on the real system are implemented in the test platform, evaluated and compared against each other.