• Title/Summary/Keyword: Remote Evaluation

Search Result 654, Processing Time 0.023 seconds

Evaluation of the Satellite-based Air Temperature for All Sky Conditions Using the Automated Mountain Meteorology Station (AMOS) Records: Gangwon Province Case Study (산악기상관측정보를 이용한 위성정보 기반의 전천후 기온 자료의 평가 - 강원권역을 중심으로)

  • Jang, Keunchang;Won, Myoungsoo;Yoon, Sukhee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.1
    • /
    • pp.19-26
    • /
    • 2017
  • Surface air temperature ($T_{air}$) is a key variable for the meteorology and climatology, and is a fundamental factor of the terrestrial ecosystem functions. Satellite remote sensing from the Moderate Resolution Imaging Spectroradiometer (MODIS) provides an opportunity to monitor the $T_{air}$. However, the several problems such as frequent cloud cover and mountainous region can result in substantial retrieval error and signal loss in MODIS $T_{air}$. In this study, satellite-based $T_{air}$ was estimated under both clear and cloudy sky conditions in Gangwon Province using Aqua MODIS07 temperature profile product (MYD07_L2) and GCOM-W1 Advanced Microwave Scanning Radiometer 2 (AMSR2) brightness temperature ($T_b$) at 37 GHz frequency, and was compared with the measurements from the Automated Mountain Meteorology Stations (AMOS). The application of ambient temperature lapse rate was performed to improve the retrieval accuracy in mountainous region, which showed the improvement of estimation accuracy approximately 4% of RMSE. A simple pixel-wise regression method combining synergetic information from MYD07_L2 $T_{air}$ and AMSR2 $T_b$ was applied to estimate surface $T_{air}$ for all sky conditions. The $T_{air}$ retrievals showed favorable agreement in comparison with AMOS data (r=0.80, RMSE=7.9K), though the underestimation was appeared in winter season. Substantial $T_{air}$ retrievals were estimated 61.4% (n=2,657) for cloudy sky conditions. The results presented in this study indicate that the satellite remote sensing can produce the surface $T_{air}$ at the complex mountainous region for all sky conditions.

Evaluation of Oil Spill Detection Models by Oil Spill Distribution Characteristics and CNN Architectures Using Sentinel-1 SAR data (Sentienl-1 SAR 영상을 활용한 유류 분포특성과 CNN 구조에 따른 유류오염 탐지모델 성능 평가)

  • Park, Soyeon;Ahn, Myoung-Hwan;Li, Chenglei;Kim, Junwoo;Jeon, Hyungyun;Kim, Duk-jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1475-1490
    • /
    • 2021
  • Detecting oil spill area using statistical characteristics of SAR images has limitations in that classification algorithm is complicated and is greatly affected by outliers. To overcome these limitations, studies using neural networks to classify oil spills are recently investigated. However, the studies to evaluate whether the performance of model shows a consistent detection performance for various oil spill cases were insufficient. Therefore, in this study, two CNNs (Convolutional Neural Networks) with basic structures(Simple CNN and U-net) were used to discover whether there is a difference in detection performance according to the structure of CNN and distribution characteristics of oil spill. As a result, through the method proposed in this study, the Simple CNN with contracting path only detected oil spill with an F1 score of 86.24% and U-net, which has both contracting and expansive path showed an F1 score of 91.44%. Both models successfully detected oil spills, but detection performance of the U-net was higher than Simple CNN. Additionally, in order to compare the accuracy of models according to various oil spill cases, the cases were classified into four different categories according to the spatial distribution characteristics of the oil spill (presence of land near the oil spill area) and the clarity of border between oil and seawater. The Simple CNN had F1 score values of 85.71%, 87.43%, 86.50%, and 85.86% for each category, showing the maximum difference of 1.71%. In the case of U-net, the values for each category were 89.77%, 92.27%, 92.59%, and 92.66%, with the maximum difference of 2.90%. Such results indicate that neither model showed significant differences in detection performance by the characteristics of oil spill distribution. However, the difference in detection tendency was caused by the difference in the model structure and the oil spill distribution characteristics. In all four oil spill categories, the Simple CNN showed a tendency to overestimate the oil spill area and the U-net showed a tendency to underestimate it. These tendencies were emphasized when the border between oil and seawater was unclear.

Quality Evaluation through Inter-Comparison of Satellite Cloud Detection Products in East Asia (동아시아 지역의 위성 구름탐지 산출물 상호 비교를 통한 품질 평가)

  • Byeon, Yugyeong;Choi, Sungwon;Jin, Donghyun;Seong, Noh-hun;Jung, Daeseong;Sim, Suyoung;Woo, Jongho;Jeon, Uujin;Han, Kyung-soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1829-1836
    • /
    • 2021
  • Cloud detection means determining the presence or absence of clouds in a pixel in a satellite image, and acts as an important factor affecting the utility and accuracy of the satellite image. In this study, among the satellites of various advanced organizations that provide cloud detection data, we intend to perform quantitative and qualitative comparative analysis on the difference between the cloud detection data of GK-2A/AMI, Terra/MODIS, and Suomi-NPP/VIIRS. As a result of quantitative comparison, the Proportion Correct (PC) index values in January were 74.16% for GK-2A & MODIS, 75.39% for GK-2A & VIIRS, and 87.35% for GK-2A & MODIS in April, and GK-2A & VIIRS showed that 87.71% of clouds were detected in April compared to January without much difference by satellite. As for the qualitative comparison results, when compared with RGB images, it was confirmed that the results corresponding to April rather than January detected clouds better than the previous quantitative results. However, if thin clouds or snow cover exist, each satellite were some differences in the cloud detection results.

A Comparative Evaluation of Multiple Meteorological Datasets for the Rice Yield Prediction at the County Level in South Korea (우리나라 시군단위 벼 수확량 예측을 위한 다종 기상자료의 비교평가)

  • Cho, Subin;Youn, Youjeong;Kim, Seoyeon;Jeong, Yemin;Kim, Gunah;Kang, Jonggu;Kim, Kwangjin;Cho, Jaeil;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.337-357
    • /
    • 2021
  • Because the growth of paddy rice is affected by meteorological factors, the selection of appropriate meteorological variables is essential to build a rice yield prediction model. This paper examines the suitability of multiple meteorological datasets for the rice yield modeling in South Korea, 1996-2019, and a hindcast experiment for rice yield using a machine learning method by considering the nonlinear relationships between meteorological variables and the rice yield. In addition to the ASOS in-situ observations, we used CRU-JRA ver. 2.1 and ERA5 reanalysis. From the multiple meteorological datasets, we extracted the four common variables (air temperature, relative humidity, solar radiation, and precipitation) and analyzed the characteristics of each data and the associations with rice yields. CRU-JRA ver. 2.1 showed an overall agreement with the other datasets. While relative humidity had a rare relationship with rice yields, solar radiation showed a somewhat high correlation with rice yields. Using the air temperature, solar radiation, and precipitation of July, August, and September, we built a random forest model for the hindcast experiments of rice yields. The model with CRU-JRA ver. 2.1 showed the best performance with a correlation coefficient of 0.772. The solar radiation in the prediction model had the most significant importance among the variables, which is in accordance with the generic agricultural knowledge. This paper has an implication for selecting from multiple meteorological datasets for rice yield modeling.

Simulation of Sentinel-2 Product Using Airborne Hyperspectral Image and Analysis of TOA and BOA Reflectance for Evaluation of Sen2cor Atmosphere Correction: Focused on Agricultural Land (Sen2Cor 대기보정 프로세서 평가를 위한 항공 초분광영상 기반 Sentinel-2 모의영상 생성 및 TOA와 BOA 반사율 자료와의 비교: 농업지역을 중심으로)

  • Cho, Kangjoon;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.251-263
    • /
    • 2019
  • Sentinel-2 Multi Spectral Instrument(MSI) launched by the European Space Agency (ESA) offered high spatial resolution optical products, enhanced temporal revisit of five days, and 13 spectral bands in the visible, near infrared and shortwave infrared wavelengths similar to Landsat mission. Landsat satellite imagery has been applied to various previous studies, but Sentinel-2 optical satellite imagery has not been widely used. Currently, for global coverage, Sentinel-2 products are systematically processed and distributed to Level-1C (L1C) products which contain the Top-of-Atmosphere (TOA) reflectance. Furthermore, ESA plans a systematic global production of Level-2A(L2A) product including the atmospheric corrected Bottom-of-Atmosphere (BOA) reflectance considered the aerosol optical thickness and the water vapor content. Therefore, the Sentinel-2 L2A products are expected to enhance the reliability of image quality for overall coverage in the Sentinel-2 mission with enhanced spatial,spectral, and temporal resolution. The purpose of this work is a quantitative comparison Sentinel-2 L2A products and fully simulated image to evaluate the applicability of the Sentinel-2 dataset in cultivated land growing various kinds of crops in Korea. Reference image of Sentinel-2 L2A data was simulated by airborne hyperspectral data acquired from AISA Fenix sensor. The simulation imagery was compared with the reflectance of L1C TOA and that of L2A BOA data. The result of quantitative comparison shows that, for the atmospherically corrected L2A reflectance, the decrease in RMSE and the increase in correlation coefficient were found at the visible band and vegetation indices to be significant.

Study of Feature Based Algorithm Performance Comparison for Image Matching between Virtual Texture Image and Real Image (가상 텍스쳐 영상과 실촬영 영상간 매칭을 위한 특징점 기반 알고리즘 성능 비교 연구)

  • Lee, Yoo Jin;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1057-1068
    • /
    • 2022
  • This paper compares the combination performance of feature point-based matching algorithms as a study to confirm the matching possibility between image taken by a user and a virtual texture image with the goal of developing mobile-based real-time image positioning technology. The feature based matching algorithm includes process of extracting features, calculating descriptors, matching features from both images, and finally eliminating mismatched features. At this time, for matching algorithm combination, we combined the process of extracting features and the process of calculating descriptors in the same or different matching algorithm respectively. V-World 3D desktop was used for the virtual indoor texture image. Currently, V-World 3D desktop is reinforced with details such as vertical and horizontal protrusions and dents. In addition, levels with real image textures. Using this, we constructed dataset with virtual indoor texture data as a reference image, and real image shooting at the same location as a target image. After constructing dataset, matching success rate and matching processing time were measured, and based on this, matching algorithm combination was determined for matching real image with virtual image. In this study, based on the characteristics of each matching technique, the matching algorithm was combined and applied to the constructed dataset to confirm the applicability, and performance comparison was also performed when the rotation was additionally considered. As a result of study, it was confirmed that the combination of Scale Invariant Feature Transform (SIFT)'s feature and descriptor detection had the highest matching success rate, but matching processing time was longest. And in the case of Features from Accelerated Segment Test (FAST)'s feature detector and Oriented FAST and Rotated BRIEF (ORB)'s descriptor calculation, the matching success rate was similar to that of SIFT-SIFT combination, while matching processing time was short. Furthermore, in case of FAST-ORB, it was confirmed that the matching performance was superior even when 10° rotation was applied to the dataset. Therefore, it was confirmed that the matching algorithm of FAST-ORB combination could be suitable for matching between virtual texture image and real image.

Development and Performance Evaluation of Multi-sensor Module for Use in Disaster Sites of Mobile Robot (조사로봇의 재난현장 활용을 위한 다중센서모듈 개발 및 성능평가에 관한 연구)

  • Jung, Yonghan;Hong, Junwooh;Han, Soohee;Shin, Dongyoon;Lim, Eontaek;Kim, Seongsam
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1827-1836
    • /
    • 2022
  • Disasters that occur unexpectedly are difficult to predict. In addition, the scale and damage are increasing compared to the past. Sometimes one disaster can develop into another disaster. Among the four stages of disaster management, search and rescue are carried out in the response stage when an emergency occurs. Therefore, personnel such as firefighters who are put into the scene are put in at a lot of risk. In this respect, in the initial response process at the disaster site, robots are a technology with high potential to reduce damage to human life and property. In addition, Light Detection And Ranging (LiDAR) can acquire a relatively wide range of 3D information using a laser. Due to its high accuracy and precision, it is a very useful sensor when considering the characteristics of a disaster site. Therefore, in this study, development and experiments were conducted so that the robot could perform real-time monitoring at the disaster site. Multi-sensor module was developed by combining LiDAR, Inertial Measurement Unit (IMU) sensor, and computing board. Then, this module was mounted on the robot, and a customized Simultaneous Localization and Mapping (SLAM) algorithm was developed. A method for stably mounting a multi-sensor module to a robot to maintain optimal accuracy at disaster sites was studied. And to check the performance of the module, SLAM was tested inside the disaster building, and various SLAM algorithms and distance comparisons were performed. As a result, PackSLAM developed in this study showed lower error compared to other algorithms, showing the possibility of application in disaster sites. In the future, in order to further enhance usability at disaster sites, various experiments will be conducted by establishing a rough terrain environment with many obstacles.

Evaluation of Space-based Wetland InSAR Observations with ALOS-2 ScanSAR Mode (습지대 변화 관측을 위한 ALOS-2 광대역 모드 적용 연구)

  • Hong, Sang-Hoon;Wdowinski, Shimon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.447-460
    • /
    • 2022
  • It is well known that satellite synthetic aperture radar interferometry (InSAR) has been widely used for the observation of surface displacement owing to earthquakes, volcanoes, and subsidence very precisely. In wetlands where vegetation exists on the surface of the water, it is possible to create a water level change map with high spatial resolution over a wide area using the InSAR technique. Currently, a number of imaging radar satellites are in operation, and most of them support a ScanSAR mode observation to gather information over a large area at once. The Cienaga Grande de Santa Marta (CGSM) wetland, located in northern Colombia, is a vast wetland developed along the Caribbean coast. The CGSM wetlands face serious environmental threats from human activities such as reclamation for agricultural uses and residential purposes as well as natural causes such as sea level rise owing to climate change. Various restoration and protection plans have been conducted to conserve these invaluable environments in recognition of the ecological importance of the CGSM wetlands. Monitoring of water level changes in wetland is very important resources to understand the hydrologic characteristics and the in-situ water level gauge stations are usually utilized to measure the water level. Although it can provide very good temporal resolution of water level information, it is limited to fully understand flow pattern owing to its very coarse spatial resolution. In this study, we evaluate the L-band ALOS-2 PALSAR-2 ScanSAR mode to observe the water level change over the wide wetland area using the radar interferometric technique. In order to assess the quality of the interferometric product in the aspect of spatial resolution and coherence, we also utilized ALOS-2 PALSAR-2 stripmap high-resolution mode observations.

The Interrelationship between Riparian Vegetation and Hydraulic Characteristics during the 2020 Summer Extreme Flood in the Seomjin-gang River, South Korea (2020 여름 섬진강 대홍수시 하안식생과 수리 특성의 상호관계)

  • Lee, Cheolho;Lee, Keonhak;Kim, Hwirae;Baek, Donghae;Kim, Won;Kim, Daehyun;Lee, Hyunjae;Woo, Hyoseop;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.2
    • /
    • pp.79-87
    • /
    • 2021
  • Because active interactions occur among vegetation, hydrology, and geomorphology in riparian systems, any changes in one of these factors can significantly affect the other two. In this study, we evaluated these interactions at four sites (two in Gajeong and two in Hahan) along the Seomjin-gang River that was substantially devastated by an extreme flood in 2020. We examined the relationship between the riparian vegetation and the hydraulic characteristics of the flood using remote sensing, hydraulic modeling, and field surveys combined. The evaluation results showed that the floods caused a record-breaking rise of up to 43.1 m above sea level at the Yeseong-bridge stage gauge station (zero elevation 27.4 m) located between the Gajeong and Hahan sites, with the shear stress being four times higher in Hahan than in Gajeong. Additionally, the water level during the flood was estimated to be a maximum of 1 m higher depending on the location in the presence of riparian plants. Furthermore, both sites underwent extensive biological damage due to the flood, with 78-80% loss in vegetation, with preferential damage observed in large willow species, compared to Quercus acutissima. The above findings imply that all plant species exhibit different vulnerabilities towards extreme floods and do not induce similar behavior towards events causing a disturbance. In conclusion, we developed strategies for effectively managing riparian trees by minimizing flood hazards that could inevitably cause damage.

Evaluation of Spectral Band Adjustment Factor Applicability for Near Infrared Channel of Sentinel-2A Using Landsat-8 (Landsat-8을 활용한 Sentinel-2A Near Infrared 채널의 Spectral Band Adjustment Factor 적용성 평가)

  • Nayeon Kim;Noh-hun Seong;Daeseong Jung;Suyoung Sim;Jongho Woo;Sungwon Choi;Sungwoo Park;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.363-370
    • /
    • 2023
  • Various earth observation satellites need to provide accurate and high-quality data after launch. To maintain and enhance the quality of satellite data, it is crucial to employ a cross-calibration process that accounts for differences in sensor characteristics, such as the spectral band adjustment factor (SBAF). In this study, we utilized Landsat-8 and Sentinel-2A satellite imagery collected from desert sites in Libya4, Algeria3, and Mauritania2 among pseudo-invariant calibration sites to calculate and apply SBAF, thereby compensating the uncertainties arising from variations in bandwidths. We quantitatively compared the reflectance differences based on the similarity of bandwidths, including Blue, Green, Red, and both the near-infrared (NIR) narrow, and NIR bands of Sentinel-2A. Following the application of SBAF, significant results with reflectance differences of approximately 1% or less were observed for all bands except NIR. In the case of the Sentinel-2A NIR band, it exhibited a significantly larger bandwidth difference compared to the NIR narrow band. However, after applying SBAF, the reflectance difference fell within the acceptable error range (5%) of 1-2%. It indicates that SBAF can be applied even when there is a substantial difference in the bandwidths of the two sensors, particularly in situations where satellite utilization is limited. Therefore, it was determined that SBAF could be applied even when the bandwidth difference between the two sensors is large in a situation where satellite utilization is limited. It is expected to be helpful in research utilizing the quality and continuity of satellite data.