• 제목/요약/키워드: Remediation technology

검색결과 409건 처리시간 0.033초

Arsenic Detoxification by As(III)-Oxidizing Bacteria: A Proposition for Sustainable Environmental Management

  • Shamayita Basu;Samir Kumar Mukherjee;Sk Tofajjen Hossain
    • 한국미생물·생명공학회지
    • /
    • 제51권1호
    • /
    • pp.1-9
    • /
    • 2023
  • Arsenic (As), which is ubiquitous throughout the environment, represents a major environmental threat at higher concentration and poses a global public health concern in certain geographic areas. Most of the conventional arsenic remediation techniques that are currently in use have certain limitations. This situation necessitates a potential remediation strategy, and in this regard bioremediation technology is increasingly important. Being the oldest representativse of life on Earth, microbes have developed various strategies to cope with hostile environments containing different toxic metals or metalloids including As. Such conditions prompted the evolution of numerous genetic systems that have enabled many microbes to utilize this metalloid in their metabolic activities. Therefore, within a certain scope bacterial isolates could be helpful for sustainable management of As-contamination. Research interest in microbial As(III) oxidation has increased recently, as oxidation of As(III) to less hazardous As(V) is viewed as a strategy to ameliorate its adverse impact. In this review, the novelty of As(III) oxidation is highlighted and the implication of As(III)-oxidizing microbes in environmental management and their prospects are also discussed. Moreover, future exploitation of As(III)-oxidizing bacteria, as potential plant growth-promoting bacteria, may add agronomic importance to their widespread utilization in managing soil quality and yield output of major field crops, in addition to reducing As accumulation and toxicity in crops.

계면활성제를 이용한 오염대수층의 선택적 폭기기술 (Air-sparging Technology for Remediation of Specific Aquifer Layer Using Surfactant)

  • 김헌기;송영수;권한준
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제13권6호
    • /
    • pp.23-30
    • /
    • 2008
  • 본 연구는 전통적인 지하 대수층 폭기기술을 시행하는 데 있어서 대수층의 특정층에 미리 수용액상 계면활성제를 수평방향으로 도입함으로써 오염물질이 실제로 존재하는 특정 지층으로 선택적으로 폭기되도록 하여 최소한의 공기량으로 오염물질 제거 효율을 극대화 하는 기술을 개발하는 것을 목적으로 한다. 본 연구에서는 균일질 모래로 충진된 2차원 상자 모델을 대수층 모사를 위하여 사용하였으며, 저농도(100 mg/L)의 음이온계 계면활성제(sodium dodecylbenzene sulfonate) 수용액을 대수층의 표면장력을 조절하는 데 사용되었다. 실험은 첫째, 계면활성제가 처방되지 않은 경우, 둘째, 공기도입부 근처에 계면활성제 용액이 도입된 경우, 그리고 셋째, 공기도입부와 토양표면의 중간부분에 계면활성제 용액이 도입된 경우의 세 부분으로 구성되어 실시되었다. 실험 결과, 계면활성제가 도입된 경우 계면활성제가 투입되지 않은 경우에 비하여 최고 5배에 해당하는 현저한 폭기영향권의 확대가 관찰되었다. 또한 계면활성제가 도입되지 않았을 때에는 폭기영향권의 범위가 도입유량에 거의 영향을 받지 않았으나 계면활성제가 도입된 경우 폭기영향권은 도입유량에 비례하는 것으로 나타났다. 특기할만한 것은 폭기영향권이 계면활성제가 도입된 수평층을 중심으로 형성되어 이 부분에 집중되어 존재하는 오염물질의 제거에 매우 유리할 수 있다는 점이다. 현재 까지 대수층 폭기기술이 도입공기의 수평확산을 유도하는 기술이 개발되어 있지 않으므로 본 연구는 기존의 대수층 폭기 복원기술의 효율을 획기적으로 개선할 수 있을 것으로 기대된다.

Hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)의 환원적 분해를 위한나노영가철의 성능평가: 회분식 및 칼럼 실험 (Evaluation of Nanoscale Zero-valent Iron for Reductive Degradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX): Batch and Column Scale Studies)

  • 이충섭;오다솜;조성희;이진욱;장윤석
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권6호
    • /
    • pp.117-126
    • /
    • 2015
  • Reductive degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by nanoscale zero-valent iron (nZVI) was investigated to evaluate the feasibility of using it for in-situ groundwater remediation. Batch experiments were conducted to quantify the kinetics and efficiency of RDX removal by nZVI, and to determine the effects of pH, dissolved oxygen (DO), and ionic strength on this process. Experimental results showed that the reduction of RDX by nZVI followed pseudo-first order kinetics with the observed rate constant (kobs) in the range of 0.0056-0.0192 min−1. Column tests were conducted to quantify the removal of RDX by nZVI under real groundwater conditions and evaluate the potential efficacy of nZVI for this purpose in real conditions. In column experiment, RDX removal capacity of nZVI was determined to be 82,500 mg/kg nZVI. pH, oxidation-reduction potential (ORP), and DO concentration varied significantly during the column experiments; the occurrence of these changes suggests that monitoring these quantities may be useful in evaluation of the reactivity of nZVI, because the most critical mechanisms for RDX removal are based on the chemical reduction reactions. These results revealed that nZVI can significantly degrade RDX and that use of nZVI could be an effective method for in-situ remediation of RDX-contaminated groundwater.

Phytoremediation of Disel-Contaminated Soil by Poplar Tree

  • 조수형;장순웅
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.252-254
    • /
    • 2004
  • In the past several years phytoremediation, defined as the use of plants for removing contaminants from media such as soils or water, has attracted a great deal of interest as a potentially useful remediation technology. In this study, we have attempted to asses the effectiveness of phytoremeidation of disel contaminate soils using hybrid poplar species. 3 poplar species had removed disel from soil effectively and toxic effect was also observed over 2500mg/kg disel contaminated soil, which indicating reducing disel removal.

  • PDF

중금속 오염 토양의 고도 선별 정화(복원)기술 (Advanced separation techniques for treatment of soil contaminated with heavy metals)

  • 이효숙;채영배
    • 기술사
    • /
    • 제41권3호
    • /
    • pp.24-29
    • /
    • 2008
  • Recently, the serious problems have been occurred due to the contaminated sites with heavy metals are increasing. There are several remediation technologies of the metal contaminated soil such as physical separation, washing with water or acid, biologically, electrically. Pytoremediation, ultrasonic etc. Among these technologies the physical separation can be put in a good option to solve the metal contaminated soil economically and environmental friendly. Because this technology has been already commercially certificated in the mineral processing field for a long time.

  • PDF

도시고형폐기물 소각비산재의 Electrokinetic 정화

  • 조용실;한상재;김수삼
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 추계학술발표회
    • /
    • pp.224-227
    • /
    • 2001
  • In general, municipal solid waste incinerator fly ash (MSWIF) has a potential hazardous leaching of heavy metal with subsurface environment variation. Therefore, to remove the heavy metal from MSWIF electrokinetic technology were used. With constant current density condition heavy metals in MSWIF removed by ion migration. During 7 days operation 40~80% of Cr, Cd and As were removed and longer operation, 14 days treatment, showed 35~100% removal efficiency.

  • PDF

철도 유류 오염토양의 복원방안에 관한 기초연구 (A Basic Study on the Remediation of Railroad Oil-contamination Soil)

  • 정우성;박덕신;양지원
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(III)
    • /
    • pp.484-490
    • /
    • 2003
  • Fundamental data was obtained to apply to the real contaminated soil of railroad by analyzing pollutant-elimination efficiency and process variables through electro-kinetic technology as well as by investigating Pollution sources of railroad soil contaminated by oil and pollution propensities.

  • PDF

Direct-Current Based Remedial Technologies for Contaminated Soils and Groundwaters

  • Lee, Suk-Young;Lee, Chae-Young;Yoon, Jun-Ki;Kim, Kil-Hong
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.3-6
    • /
    • 2002
  • Electron transfer is the major natural process governing the behavior of contaminants in soils and groundwaters. Biological degradation of contaminants, i.e., microbial transformation of hazardous compounds, is a well known irreversible electron transfer process. Although it is not well defined as a separate process, abiotic electron-transfer is also an important process for mobilizing/demobilizing inorganic contaminants in soils and groundwaters. Therefore, numerous remedial technologies have been developed on the basis of electron transfer concept. Among them,

  • PDF