• Title/Summary/Keyword: Remediation technology

Search Result 409, Processing Time 0.023 seconds

양친매성 유기점토를 이용한 중금속과 유기 오염물질 동시제거 기술 (The Application of Dual Function Organoclay on Remediation of Toxic Metals and Organic Compounds in Soil-Water System)

  • 옥용식;임수길;김정규
    • 한국환경농학회지
    • /
    • 제22권3호
    • /
    • pp.177-184
    • /
    • 2003
  • Although clay can sorb significant amounts of inorganic contaminants from soils and wastewater, the hydration of exchangeable cations in clay minerals makes it hydrophilic at the clay mineral surfaces and interlayers. Thus, natural clays are often ineffective in complexing and stabilizing toxic organic contaminants in soils and groundwater environment. But, substituting these hydrated cations with cationic surfactant such as QAC(Quaternary ammonium Compound) can change the natural clay from hydrophilic to hydropobic. Furthermore functionalized organoclay can act as a powerful dual function sorbent for both toxic metals and organic compounds. It also can be used as landfill clay liners, slurry walls, nano-composite materials, petroleum tank farms, waste treatment, and filter systems. To use this modified clay minerals effectively, it is required to understand the fundamental chemistry of organoclay, synthetic procedures, its engineering application, bioavailability of sorbed ion-clay complex, and potential risk of organoclay. In this review, we investigate the use, application and historical background of the organoclay in remediation technology. The state-of-the-art of organoclay research is also discussed. Finally, we suggest some future implications of organoclay in environmental research.

Short-term effects of fertilizer application on soil respiration in red pine stands

  • Kim, Choonsig;Jeong, Jaeyeob;Bolan, Nanthi S.;Naidu, Ravi
    • Journal of Ecology and Environment
    • /
    • 제35권4호
    • /
    • pp.307-311
    • /
    • 2012
  • This study was conducted to evaluate the dynamics of soil respiration (total soil and heterotrophic respiration) following fertilizer application in red pine forests. Fertilizer (N:P:K = 113:150:37 kg/ha), which reflects current practices in Korean forest, was applied in April 2011, and total soil and heterotrophic respiration rates were monitored from April 2011 to March 2012. Monthly variation of total soil and heterotrophic respiration rates were similar between the fertilizer and control treatments, as soil temperature was the dominant factor controlling the both rates. Total soil respiration rates during the study period were not significantly different between the fertilizer (0.504 g $CO_2\;m^{-2}\;h^{-1}$) and control (0.501 g $CO_2\;m^{-2}\;h^{-1}$) treatments. However, the proportion of heterotrophic respiration was higher in the fertilizer (78% of total soil respiration rates) than in the control (62% of total soil respiration rates) treatments. These results suggest that current fertilizer practices in Korea forest soil do not substantially affect total soil respiration rates.

크롬환원제와 인산염으로 처리된 6가 크롬 오염토양의 고정화 (Immobilization Characteristics of Hexavalent Chromium Contaminated Soils Treated with Phosphate and Chromium Reducing Agent)

  • 이의상
    • 환경영향평가
    • /
    • 제16권1호
    • /
    • pp.27-33
    • /
    • 2007
  • Hexavalent chromium-contaminated soils are encounted at many unregulated discharge and improper handling of wastes from electroplating, leather tanning, steelmaking, corrosion control, and wood preservation industries. Contamination of hexavalent chromium in the soil is a major concern because of its toxicity and threat to human life and environment. Current technologies for hexavalent chromium-contaminated soil remediation are usually costly and/or cannot permanently prohibit the toxic element from entering into the biosphere. Thus, as an alternative technique, immobilization is seen as a cost-effective and promising remediation technology that may reduce the leachable potential of hexavalent chromium. The purpose of this paper is to develope an immobilization technique for the formation of the geochemically stabilized hexavalent chromium-contaminated soil from the reactions of labile soil hexavalent chromium forms with the added soluble phosphate and chromium reducing agent. From the liquid phase experiment, reaction order of chromium reducing agent, soluble phosphate, alkali solution shows the best removal efficiency of 95%. In addition, actual soil phase experiment demonstrates up to 97.9% removal efficiency with 1:1 molar ratio of chromium reducing agent and soluble phosphate. These results provide evidence for the potential use of soluble phosphate and chromium reducing agent for the hexavalent chromium-contaminated soil remediation.

Removal of Cadmium from Clayey Soil by Electrokinetic Method

  • Niinae, Masakazu;Sugano, Tsuyoshi;Aoki, Kenji
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.91-96
    • /
    • 2001
  • Restoration of contaminated soils to an environmentally acceptable condition is important. One of the newer techniques in soil remediation is a method based on electrokinetic phenomena in soils. The technology uses electricity to affect chemical concentrations and water flow through the pores of soils. An important advantage of electrokinetic soil remediation over other in-situ processes such as soil flushing is the capability of control over the movement of the contaminants. Because the migration of the contaminants is confined by the electric field, there is little dispersion outside the treatment zone. Furthermore, the process is effective for soils with low and variable permeability. In the present study, the distributions of cadmium in the electrokinetic processing of kaolinite under the condition of constant applied voltage are investigated. Cadmium accumulates near the cathode without reducing the diffusion of hydroxide ion into the soil. In keeping the catholyte pH at neutrality, cadmium migrates toward the cathode without any accumulation of cadmium near the cathode and is successfully removed at the cathode reservoir. It was also found that the progress of electrokinetic processing of cadmium could be gasped to a certain extent by monitoring the local voltage and the current density.

  • PDF

Advancement of Clay and Clay-based Materials in the Remediation of Aquatic Environments Contaminated with Heavy Metal Toxic Ions and Micro-pollutants

  • Lalhmunsiama, Lalhmunsiama;Malsawmdawngzela, Ralte;Vanlalhmingmawia, Chhakchhuak;Tiwari, Diwakar;Yoon, Yiyong
    • 공업화학
    • /
    • 제33권5호
    • /
    • pp.502-522
    • /
    • 2022
  • Clay minerals are natural materials that show widespread applications in various branches of science, including environmental sciences, in particular the remediation of water contaminated with various water pollutants. Modified clays and minerals have attracted the attention of researchers in the recent past since the modified materials are seemingly more useful and efficient for removing emerging water contaminants. Therefore, modified engineered materials having multi-functionalities have received greater interest from researchers. The advanced clay-based materials are highly effective in the remediation of water contaminated with organic and inorganic contaminants, and these materials show enhanced selectivity towards the specific pollutants. The review inherently discusses various methods employed in the modification of clays and addresses the challenges in synthesizing the advanced engineered materials precursor to natural clay minerals. The changes in physical and chemical properties, as investigated by various characterization techniques before and after the modifications, are broadly explained. Further, the implications of these materials for the decontamination of waterbodies as contaminated with potential water pollutants are extensively discussed. Additionally, the insights involved in the removal of organic and inorganic pollutants are discussed in the review. Furthermore, the future perspectives and specific challenges in the scaling up of the treatment methods in technology development are included in this communication.

The review of international forum on magnetic force control IFMFC activity from 2010

  • Watanabe, Tsuneo
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권3호
    • /
    • pp.1-6
    • /
    • 2022
  • The Magnetic Force Control MFC technology is very useful because of its physical treatment process. Especially the Magnetic Separation MS technology is expected to contribute to SDGs 2030, Circular Economy and Carbon neutral 2050 realization. This paper describes the review of the IFMFC activity from 2010.The IFMFC is organized by three local committees of researchers in Japan, China and Korea. The IFMFC aims to exchange the information of the development results using the MFC technology and to educate the young researchers. The forum has been held in every year around three countries. In 2020 and 2021, the forum was organized by Zoom online due to the COVID-19. The 134 presentations were made up to 2020.The breakdown of these presentations are categorized to the environment remediation52%, material resource37% and fundamental research/technology11%. The Super Conducting Magnet SCM development promotes the MFC technologies. There are some impressive backgrounds as to the brilliant SM technology applications for many different magnetism ; SCM development, High Gradient Magnetic Separation HGMS, magnetic seeding method and magneto-Archimedes effect. This paper reviews the IFMFC activity according to those presented presentations.

폐금속 광산지역 비소 및 중금속 오염에 대한 인체위해성평가 및 복원농도 설정 (Human Risk Assessment of Arsenic and Heavy Metal Contamination and Estimation of Remediation Concentration within Abandoned Metal Mine Area)

  • 이상우;김정진;박미정;이상환;김순오
    • 한국광물학회지
    • /
    • 제28권4호
    • /
    • pp.309-323
    • /
    • 2015
  • 본 연구에서는 폐금속 광산에 특화된 인체위해성평가 방법을 제시하고, 국내 폐금속 광산지역으로부터 도출된 다양한 노출인자 값을 적용하여 폐금속 광산지역의 주민(성인 남자, 성인 여자, 어린이)에 대하여 인체위해성평가를 수행하였다. 또한 인체위해성평가의 결과로부터 중금속 오염에 의한 주민의 건강이 우려되는 경우, 위해성에 기반한 각 매체(토양, 지하수, 지표수)별 복원기준을 제시하고자 하였다. 본 연구 결과, 발암위해도와 비발암위해도를 지시하는 총 초과발암위해도(TCR)와 위험지수(HI)는 지하수섭취와 농작물섭취에 의한 경로로 노출되는 비소에 의해 각각 허용 가능한 수준인 1.00E-6과 1을 크게 초과하는 것으로 나타나서 연구대상 지역의 인체위해성이 큰 것으로 평가되었다. 위해도 저감을 위한 복원농도 산정 결과, 발암위해도 기준 계산 시 As 6.83~6.85 mg/kg, Pb 18.41~18.46 mg/kg, 비발암위해도 기준 계산 시 Cu 17.38 mg/kg, As 9.13 mg/kg의 수준으로 토양정화가 필요한 것으로 나타났다.

전자 수용체가 BTEX, MTBE로 오염된 토양의 혐기성 자연정화에 미치는 영향 (Effect of Electron Acceptors on the Anaerobic Biodegradation of BTEX and MTBE at Contaminated Sites)

  • 김원석;김지은;백지혜;상병인
    • 한국물환경학회지
    • /
    • 제21권4호
    • /
    • pp.403-409
    • /
    • 2005
  • Methyl tert-butyl ether (MTBE) contamination in groundwater often coexists with benzene, toluene, ethylbenzene, and xylene (BTEX) near the source of the plume. Then, groundwater contamination problems have been developed in areas where the chemical is used. Common sources of water contamination by BTEX and MTBE include leaking underground gasoline storage tanks and leaks and spills from above ground fuel storage tanks, etc. In oil-contaminated environments, anaerobic biodegradation of BTEX and MTBE depended on the concentration and distribution of terminal electron acceptor. In this study, effect of electron acceptor on the anaerobic biodegradation for BTEX and MTBE-contaminated soil was investigated. This study showed the anaerobic biodegradation of BTEX and MTBE in two different soils by using nitrate reduction, ferric iron reduction and sulfate reduction. The soil samples from the two fields were enriched for 65 days by providing BTEX and MTBE as a sole carbon source and nitrate, sulfate or iron as a terminal electron acceptor. This study clearly shows that degradation rate of BTEX and MTBE with electron acceptors is higher than that without electron acceptors. Degradation rate of Ethylbenzene and Xylene is higher than that of Benxene, Toluene, and MTBE. In case of Benzene, Ethylbenzene, and MTBE, nitrate has more activation. In case of Toluene and Xylene, sulfate has more activation.

국내 토양과 지하수 오염 복원사업에 대한 고찰 (Remediation of Contaminated Soil and Groundwater in Korea: Suggestions for Progress)

  • 이석영;이채영;김두일
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2001년도 정기총회 및 제3회 특별지포지움
    • /
    • pp.23-33
    • /
    • 2001
  • 국내 토양과 지하수 오염이 심각한 상황에 도달하였다는 것은 널리 알려진 사실이다. 선진국에서는 20 여년 전부터 그 심각성을 이해하고 환경복원 사업이라는 새로운 분야를 발전시켜 왔으나 많은 큰 문제들의 해결로 현재는 사업의 소강상태에 있다고 본다. 토양과 지하수는 우리가 깨끗이 보존하여야 할 자연 자원이다. 토양과 지하수 환경사업은 오염 예방, 조사, 복원 사업으로 나눌 수 있는데 본 발표에서는 조사와 복원에 관한 문제들을 고찰하고자 한다. 국내에서의 복원 사업은 시작인 단계에 있으며 국가 정책과 투자의지에 따라 그 전망은 결정될 것이다. 복원은 평가로부터 시작 오염 물질의 위해도와 경제성 등을 고려한 복원방법의 선정과 실행으로 끝나게 된다. 물론 물리탐사도 조사 단계에서 사용되는 도구이지만 그 필요성은 경제적일 뿐만 아니라 다른 방법에서는 얻을 수 없는 결과를 보여줄 수 있기 때문이다. 물리탐사와 마찬가지로 전 조사-복원과정에서 토양-지질-지하수의 이해가 정확한 해석과 판단을 위하여 선행되어야 한다. 강조되어야 할 것은, 조사-복원 사업은 연구와 개발(R&D)과는 달리 복원 목표를 달성할 수 있는 여러 방법 중 가장 경제적 (cost-effectiveness)인 방법을 선택하여 사업을 수행함으로써 고객을 만족시켜야 한다는 것이다.

  • PDF

다공질 파일을 이용한 점토질 갯벌의 저질환경개선 (Remediation of Muddy Tidal Flat using Porous Pile)

  • 김경회;이인철;강윤구
    • 한국해안·해양공학회논문집
    • /
    • 제27권1호
    • /
    • pp.9-13
    • /
    • 2015
  • 본 연구에서는 일본 히로시마시 텐마강 하구에 위치한 점토질 갯벌을 대상으로 투수성이 높은 다공질 파일을 설치하여 갯벌 내부에서의 지하수 흐름 형성여부를 확인하고 그에 따른 저질의 성상변화를 조사하였다. 하천의 수위가 변할 때 하천수가 다공질 파일의 하부 및 상부를 통해 공급되면서 갯벌 내부에서 지하수의 흐름이 형성되는 것이 확인되었다. 지하수의 흐름을 통해 다공질 파일내의 DO 농도가 최대 4 mg/L까지 증가하였다. 다공질 파일 내부의 DO 농도의 증가는 저질내의 환원물질과 유기물량을 감소시키는데 효과적이었으며, 지하수의 흐름은 퇴적된 점토질 입자의 재부상을 촉진시키는 것으로 조사되었다. 이상의 결과로부터 점토질 갯벌 내에 다공질 파일을 설치함으로써 점토질 갯벌의 저질 환경을 효과적으로 개선할 수 있음을 확인하였다.