• Title/Summary/Keyword: Remediation technology

Search Result 410, Processing Time 0.021 seconds

Cr(VI) Resistance and Removal by Indigenous Bacteria Isolated from Chromium-Contaminated Soil

  • Long, Dongyan;Tang, Xianjin;Cai, Kuan;Chen, Guangcun;Shen, Chaofeng;Shi, Jiyan;Chen, Linggui;Chen, Yingxu
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1123-1132
    • /
    • 2013
  • The removal of toxic Cr(VI) by microorganisms is a promising approach for Cr(VI) pollution remediation. In the present study, four indigenous bacteria, named LY1, LY2, LY6, and LY7, were isolated from Cr(VI)-contaminated soil. Among the four Cr(VI)-resistant isolates, strain LY6 displayed the highest Cr(VI)-removing ability, with 100 mg/l Cr(VI) being completely removed within 144 h. It could effectively remove Cr(VI) over a wide pH range from 5.5 to 9.5, with the optimal pH of 8.5. The amount of Cr(VI) removed increased with initial Cr(VI) concentration. Data from the time-course analysis of Cr(VI) removal by strain LY6 followed first-order kinetics. Based on the 16S rRNA gene sequence, strain LY6 was identified as Pseudochrobactrum asaccharolyticum, a species that had never been reported for Cr(VI) removal before. Transmission electron microscopy and energy dispersive X-ray spectroscopy analysis further confirmed that strain LY6 could accumulate chromium within the cell while conducting Cr(VI) removal. The results suggested that the indigenous bacterial strain LY6 would be a new candidate for potential application in Cr(VI) pollution bioremediation.

Discussion on the Concept of Terminology in the Introduction of Virtual Studio (가상스튜디오 도입기의 용어 개념에 관한 논의)

  • Nah, So-Mi
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.1
    • /
    • pp.91-98
    • /
    • 2022
  • Currently, new terms are overflowing with the development of technology from VR, AR, XR to Metaverse. Every time a term is generated in this way, society considers it a new technology and tends to use it enthusiastically, but there is confusion in correctly understanding and utilizing the category of the term. He would like to discuss the virtual studio that played an important role in the development of broadcasting CG (Computer Graphics) technology in the 1990s, and talk about the introduction of new terms in the past and how to use them. Therefore, this paper examines the gap between chaos and upright each time a term is generated based on the time when the virtual studio is introduced, and analyzes the utilization of new technology from the past through the introduction machine manufacturing case. By examining the past technological development processes expressed by remediation, this paper argues that the current situation is not a new technology but an expression of a new term, that is, a phenomenon that appears during the gradual development of technology. It is something to do.

Facile synthesis of ZnBi2O4-graphite composites as highly active visible-light photocatalyst for the mineralization of rhodamine B

  • Nguyen, Thi Mai Tho;Bui, The Huy;Dang, Nguyen Nha Khanh;Ho, Nguyen Nhat Ha;Vu, Quang Huy;Ngo, Thi Tuong Vy;Do, Manh Huy;Duong, Phuoc Dat;Nguyen, Thi Kim Phuong
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2442-2451
    • /
    • 2018
  • Novel highly active visible-light photocatalysts in the form of zinc bismuth oxide ($ZnBi_2O_4$) and graphite hybrid composites were prepared by coupling via a co-precipitation method followed by calcination at $450^{\circ}C$. The asprepared $ZnBi_2O_4$-graphite hybrid composites were tested for the degradation of rhodamine B (RhB) solutions under visible-light irradiation. The existence of strong electronic coupling between the two components within the $ZnBi_2O_4$-graphite heterostructure suppressed the photogenerated recombination of electrons and holes to a remarkable extent. The prepared composite exhibited excellent photocatalytic activity, leading to more than 93% of RhB degradation at an initial concentration of $50mg{\cdot}L^{-1}$ with 1.0 g catalyst per liter in 150 min. The excellent visible-light photocatalytic mineralization of $ZnBi_2O_4-1.0graphite$ in comparison with pristine $ZnBi_2O_4$ could be attributed to synergetic effects, charge transfer between $ZnBi_2O_4$ and graphite, and the separation efficiency of the photogenerated electrons and holes. The photo-induced $h^+$ and the superoxide anion were the major active species responsible for the photodegradation process. The results demonstrate the feasibility of $ZnBi_2O_4-1.0graphite$ as a potential heterogeneous photocatalyst for environmental remediation.

Feasibility Study on Remediation for Railroad-contaminated Soil with Waste-lubricant (윤활유 유래 철도 오염토양의 정화방법 연구)

  • Park, Sung-Woo;Shin, Min-Chul;Jeon, Chil-Sung;Baek, Ki-Tae;Lee, Jae-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.2
    • /
    • pp.30-35
    • /
    • 2008
  • In this study, the feasibility of soil washing, chemical oxidation and sonication was investigated to treat lubricantcontaminated railroad soil. Tergitol, a non-ionic surfactant, was used as a washing agent with or without iso-propyl acohol as a cosolvent. However, it was not effective to remove lubricant from soil even though tergitol was the most effective washing agent for diesel-contaminated soil. The cosolvent reduced the overall washing efficiency. Chemical oxidation removed 30% of lubricant from contaminated soil. Soil washing after chemical oxidation extracted additionally 16-17% of lubricant. Sonication enhanced-soil washing showed enhanced overall efficiency of soil washing. Lubricant-contaminated soil should be remediated by the other technology used for diesel-contaminated soil.

Effects of Activated Carbon on Growth and Physical Responses of Indoor Plant Dracaena braunii to Alleviate Salt-induced Stress in Water Culture (수경재배 시 염소흡착을 위한 활성탄 처리가 실내식물인 개운죽(Dracaena braunii)의 생육 및 생리에 미치는 영향)

  • Ju, Jin Hee;Son, Hye Mi;Kim, Won Tae;Yoon, Yong Han
    • Journal of Environmental Science International
    • /
    • v.28 no.3
    • /
    • pp.321-328
    • /
    • 2019
  • This study aimed to analyze the growth and physical responsees of Dracaena braunii in response salt accumulation in ornamental water culture and to examine the effect of activated carbon on this growth response. The experiment was conducted in a plant growth chamber and the indoor environmental conditions of the chamber were set at $23{\pm}1^{\circ}C$ temperature, $70{\pm}3%$ humidity, and 1,000 lux brightness. The observation of the growth response of plants in the presence of activated carbon showed that the pH with activated carbon maintained sub-acidic to neutral (6.27~7.32) conditions and showed decreased electric conductivity in the media. As the treatment with added activated carbon showed good growth and physical responses, this indicated that absorption effect of activated carbon had a positive influence on the growth of plants. However, as the absorption effect of activated carbon may decrease over time and the use of high concentrations of activated carbon might cause nutrition shortage, various concentration of activated carbon and their absorption effects need to be investigated in the future.

Technical and Strategic Approach for the Control of Cyanobacterial Bloom in Fresh Waters (담수수계에서 남조류 증식억제의 기술적, 전략적 접근)

  • Lee, Chang Soo;Ahn, Chi-Yong;La, Hyun-Joon;Lee, Sanghyup;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.233-242
    • /
    • 2013
  • Cyanobacteria (blue-green algae) are not only the first oxygenic organisms on earth but also the foremost primary producers in aquatic environment. Massive growth of cyanobacteria, in eutrophic waters, usually changes the water colour to green and is called as algal (cyanobacterial) bloom or green tide. Cyanobacterial blooms are a result of high levels of primary production by certain species such as Microcystis sp., Anabaena sp., Oscillatoria sp., Aphanizomenon sp. and Phormidium sp. These cyanobacterial species can produce hepatotoxins or neurotoxins as well as malodorous compounds like geosmin and 2-methylisoborneol (MIB). In order to solve the nationwide problem of hazardous cyanobacterial blooms in Korea, the following technically and strategically sound approaches need to be developed. 1) As a long-term strategy, reduction of the nutrients such as phosphorus and nitrogen in our water bodies to below permitted levels. 2) As a short term strategy, field application of combination of already established bloom remediation techniques. 3) Development of emerging convergence technologies based on information and communication technology (ICT), environmental technology (ET) and biotechnology (BT). 4) Finally, strengthening education and creating awareness among students, public and industry for effective reduction of pollution discharge. Considering their ecological roles, a complete elimination of cyanobacteria is not desirable. Hence a holistic approach mentioned above in combination to addressing the issue from a social perspective with cooperation from public, government, industry, academic and research institutions is more pragmatic and desirable management strategy.

Towards UAV-based bridge inspection systems: a review and an application perspective

  • Chan, Brodie;Guan, Hong;Jo, Jun;Blumenstein, Michael
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.283-300
    • /
    • 2015
  • Visual condition inspections remain paramount to assessing the current deterioration status of a bridge and assigning remediation or maintenance tasks so as to ensure the ongoing serviceability of the structure. However, in recent years, there has been an increasing backlog of maintenance activities. Existing research reveals that this is attributable to the labour-intensive, subjective and disruptive nature of the current bridge inspection method. Current processes ultimately require lane closures, traffic guidance schemes and inspection equipment. This not only increases the whole-of-life costs of the bridge, but also increases the risk to the travelling public as issues affecting the structural integrity may go unaddressed. As a tool for bridge condition inspections, Unmanned Aerial Vehicles (UAVs) or, drones, offer considerable potential, allowing a bridge to be visually assessed without the need for inspectors to walk across the deck or utilise under-bridge inspection units. With current inspection processes placing additional strain on the existing bridge maintenance resources, the technology has the potential to significantly reduce the overall inspection costs and disruption caused to the travelling public. In addition to this, the use of automated aerial image capture enables engineers to better understand a situation through the 3D spatial context offered by UAV systems. However, the use of UAV for bridge inspection involves a number of critical issues to be resolved, including stability and accuracy of control, and safety to people. SLAM (Simultaneous Localisation and Mapping) is a technique that could be used by a UAV to build a map of the bridge underneath, while simultaneously determining its location on the constructed map. While there are considerable economic and risk-related benefits created through introducing entirely new ways of inspecting bridges and visualising information, there also remain hindrances to the wider deployment of UAVs. This study is to provide a context for use of UAVs for conducting visual bridge inspections, in addition to addressing the obstacles that are required to be overcome in order for the technology to be integrated into current practice.

The Interpretation of Petroleum Species from Contaminated Soil by Complex Oil (복합유류 토양오염에 따른 유종 해석)

  • Lim, Young-Kwan;Kim, Ji-Yeon;Kim, Wan-Sik;Lee, Jeong-Min
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.1
    • /
    • pp.17-23
    • /
    • 2019
  • Clean soil environment is of crucial importance to sustain lives of ecosystem and humans. With rapid industrialization, there has been a great increase of soil contamination by accidental releases of petroleum products. In general, soil remediation is an expensive and time-consuming process as compared to cleanup of water and air. Moreover, determining the source and responsible parties of soil pollution often turns into legal conflicts and that further delay the cleanup process of contaminated sites. In practice, total petroleum hydrocarbon (TPH) analysis has been employed to determine the petroleum species and to track down the responsible polluters. However, this approach often suffers from differentiating similar TPH species. In this study, we analyzed TPH chromatogram patterns of 24 domestic petroleum products in specific carbon ranges (${\sim}C_{10}$, $C_{10}-C_{12}$, $C_{12}-C_{36}$, and $C_{36}{\sim}$) and the fractional changes of THP ratio in the mixture products of gasoline, kerosene and diesel. The proposed TPH analysis method in this study could serve as a useful tool to better analyze the petroleum species in soils contaminated with complex oil mixtures, and ultimately be used to identify the polluters of soil.

A Study on Selective Adsorption of Phenanthrene Dissolved in Triton X-100 Solution using Activated Carbons (활성탄을 이용한 Triton X-100 용액에서의 phenanthrene의 선택적 흡착에 관한 연구)

  • Ahn, Chi-Kyu;Kim, Young-Mi;Woo, Seung-Han;Park, Jong-Moon
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.13-21
    • /
    • 2006
  • Polycyclic aromatic hydrocarbons (PAHs) are widespread soil contaminants and major environmental concerns. PAHs have extremely low water solubility and are strongly sorbed to soil. A potential technology for remediation of PAHcontaminated soils is a soil washing with surfactant solutions. While the use of surfactants significantly enhances the performance of soil remediation, operation costs are increased. Selective adsorption of PAHs by activated carbons is proposed to reuse the surfactants in the soil-washing process. The adsorption isotherms of pure chemicals (Triton X-100 and phenanthrene) onto three granular activated carbons were obtained. The selective adsorption of phenanthrene in mixed solution was examined at various concentrations of phenanthrene and Triton X-100. The selectivity results were discussed with pore size distribution of activated carbons and molecular sizes of phenanthrene and the Triton X-100 monomer. The selectivity for phenanthrene was much larger than 1 regardless of the particle size of activated carbons. The selective adsorption using activated carbons with proper pore size distribution would greatly reduce the material cost for the soil washing process by the reuse of the surfactants.

Use of Biosurfactant for the Removal of Organic Pollutants in Soil/Groundwater (바이오 계면활성제에 의한 토양/지하수내 유기성 오염물질 제거)

  • Ko, Seok-Oh;Yoon, Seok-Pyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.193-201
    • /
    • 2000
  • Partitioning of hydrophobic organic compounds (HOCs) to a biosurfactant, hydroxypropyl-${\beta}$-cyclodextrin (HPCD), was conducted to evaluate the feasibility of using HPCD to remove HOCs from soil/groundwater. HOC partitioning to HPCD was very fast, with over 95% of the complexation occurring within 10 min. Some influence of solution chemistry and HOC concentration on HOC-HPCD complex formation coefficients was observed. HPCD sorption on soil as quantified by both a fluorescence technique and total organic carbon measurements was negligible, indicating no significant affinity of HPCD for the solid phase. Although the HOC solubilization capability of HPCD was lower than that of synthetic surfactants such as SDS and Tween 80, HPCD can be effective in removing sorbed HOCs from a model subsurface environment, primarily because of its negligible sorption to the solid phase (i.e., all the HPCD added facilitates HOC elution). However, in contrast with conventional surfactants, HPCD becomes relatively less effective for HOC partitioning with increasing HOC size and hydrophobicity. Therefore, comparisons between HPCD and synthetic surfactants for enhanced remediation applications must consider the specific HOC(s) present and the potential for surfactant material losses to the solid phase, as well as other more generally recognized considerations such as material costs and potential toxicological effects.

  • PDF