• 제목/요약/키워드: Remediation Clean up soil

검색결과 26건 처리시간 0.023초

국내 오염토양 복원 현황과 기술 동향 (Status of Soil Remediation and Technology Development in Korea)

  • 양지원;이유진
    • Korean Chemical Engineering Research
    • /
    • 제45권4호
    • /
    • pp.311-318
    • /
    • 2007
  • 국내의 평균적인 토양오염도는 매년 증가하고 있으며, 오염물질의 지속성 및 잔류성이 큰 토양오염의 특성상 이를 복원하기 위해서는 막대한 비용이 소모될 것으로 추정된다. 우리나라에서는 토양 오염에 대한 사회적 관심이 증가함에 따라 1990년대 중반부터 토양 환경 관리와 복원을 위해 정책적으로 복원 기술의 개발과 오염토양 복원 사업을 추진하고 있다. 오염토양 복원 기술은 처리 위치별로 원위치 기술과 비원위치 기술로 나뉘며, 오염원의 제거방법에 따라 생물학적, 물리화학적, 열적 기술로 분류할 수 있다. 국내에서는 군부대 및 철도청 부지, 소규모의 유류 오염 지역에 대해 복원 사업을 실시한 사례가 대부분이며 석유화학 단지내의 오염 등은 회사 자체에서 내부적으로 처리하고 있어 일반에 공개되지는 않고 있지만 그 규모는 상당한 것으로 추산되고 있다. 대부분의 복원사업에는 가장 경제성이 입증된 토양증기추출법, 생물학적 통풍법과 같은 원위치 정화기술이 사용되었다. 최근에는 첨단 기술을 도입하여 환경친화적 토양 복원 기술을 개발하려는 연구가 진행 중이며, 이러한 연구의 예로서 나노 기술과 분자 생물학적 기법을 이용한 복원 기술 개발, 개별 기술의 한계를 극복하기 위한 통합기술 개발 등이 있다. 효율적인 오염토양의 복원을 위해서는 오염물질과 오염부지의 특성을 고려하여 연구 대상 기술의 현장 적용성을 높여야 하며, 무엇보다 토양에 대한 인식 변화와 환경 개선을 위한 지속적인 노력이 필요하다.

국내 오염토양 반출정화사업 현황 (The Occurrence and Treatment Status of Off-site Contaminated Soils in Korea)

  • 한수호;정명채;김정욱;전순원;누엔 쿠억 트안;윤경욱;민선기
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제25권4호
    • /
    • pp.1-6
    • /
    • 2020
  • Recently, ex-situ remediation technologies has been emerging to clean up contaminated soils mainly because the in-situ techniques have limited applicability and technical difficulties in relatively small contaminated sites. Accordingly, implementation of off-site treatment and disposal have been continuously increased in soil remediation and restoration projects in Korea. However, in many cases, reclaimed soil is still not properly recycled or reused. Therefore, there is an urgent need to document the current status of soil management practices in soil remediation projects in the nation. This study presents a survey of soil contamination status and remedial approaches in Korea based on soil cleanup projects completed in 2015 - 2019, and proposes the possible options of the recycling or reusing the reclaimed soils under compliance with related regulations. The results of the soil survey showed soil contamination was most severe in gas stations, industrial facilities, and military areas. The major types of pollution were related to the petroleum-contaminated site (TPH and BTEX) with 77.0% occurrence in all the contaminated sites. The reclaimed soils were mostly reused as a ground filling-up soils in industrial facilities (60.0%) and warehouses (37.0%).

연직배수재를 이용한 토양세정시스템의 오염토양정화 특성 (The Characteristics of Soil Remediation by Soil Flushing System Using PVDs)

  • 박정준
    • 한국환경복원기술학회지
    • /
    • 제10권5호
    • /
    • pp.76-86
    • /
    • 2007
  • For the purpose of ground improvement by means of soil flushing systems. Incorporated technique with prefabricated vertical drains have been used for dewatering from fine-grained soils. The laboratory model tests were performed by using the flushing tracer solutions for silty soils and recorded the tracer concentration changes with the elapsed time and flow rates. A mathematical model for prediction of contaminant transport using the PVD technology has been developed. The clean-up times for the predictions on both soil condition indicate more of a sensitivity to the dispersivity parameter than to the extracted flow rate and vertical velocity parameters. Based on the results of the analyses, numerical analysis indicate that the most important factor to the in-situ soil remediation in prefabricated vertical drain system is the effective diameter of contaminated soil.

Remediation of Contaminated Groundwater: Change of Paradigm for Sustainable Use

  • Lee, Jin-Yong;Lee, Kang-Kun
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권6호
    • /
    • pp.1-7
    • /
    • 2013
  • Groundwater development and use have been increasing in Korea causing frequent occurrences of related hazards such as groundwater level decline, land subsidence, and groundwater contamination. To tackle these groundwater problems, central and local governments have set-up and maintained many groundwater monitoring programs such as the National Groundwater Monitoring Network and the Groundwater Quality Monitoring Network, which collect very valuable data on the overall status of domestic groundwater to aid proper groundwater management. However, several problems mainly related to the remediation of contaminated groundwater remain unresolved. Recently, there have been some incidents related to the contamination of groundwater, and these have drawn the concern of the Korean people. Although groundwater contamination has been investigated in detail, actual groundwater remediation work has not yet been implemented. The remediation of the contaminated groundwater must begin immediately in order to sustain the eco-system service of clean groundwater and enhance the welfare of the Korean people.

일본의 토양지하수오염 및 복원사례 (The Status of Soil and Groundwater Contamination in Japan and Case Studies of their Remediation)

  • Komai, Takeshi;Kawabe, Yoshishige
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.25-39
    • /
    • 2003
  • Risk and exposure assessment for subsurface environment is very important for both aspects of health and environmental protection as well as making decision of remedial goal for engineering activities. Exposure due to hazardous chemicals in the subsurface environment is essential to assess risk lev121 to individual person, especially from soil and groundwater environmental media. In this paper, the status of soil and groundwater contamination is presented to discuss on the problem for environmental risk assessment. The methodologies of fate and exposure models are also discussed by conducting the case studies of exposure assessment for heavy metals, organic compounds, and dioxin compounds. In addition, the structure of exposure models and available data for model calculation are examined to make clear more realistic exposure scenarios and the application to the practical environmental issues. Three kinds of advanced remediation techniques for soil and groundwater contamination are described in this paper, The most practical method for VOCs is the bio-remediation technique in which biological process due to consortium of microorganisms can be applied. For more effective remediation of soil contaminated by heavy metals we have adopted the soil flushing technique and clean-up system using electro-kinetic method. We have also developed the advanced techniques of geo-melting method for soil contaminated by DXNs and PCB compounds. These techniques are planed to introduce and to apply for a lot of contaminated sites in Japan.

  • PDF

오염부지 정화기술과 그 이용기법 (Remedial Action Technologies for the Contaminated Soil and Groundwater, and its Usage)

  • 이민효
    • 대한지하수환경학회지
    • /
    • 제3권2호
    • /
    • pp.60-69
    • /
    • 1996
  • 산업의 급진적인 발달로 수많은 유해물질이 잔연계로 유출되고 있으며 이들 오염물질은 환경매 체중 최종 수용체인 토양에 유입되어 지하수까지도 위해를 주고 있다. 한편 토양 및 지하수는 유해물질에 의해 일단 오염되면 인위적으로 복원하기 전에는 치유가 되지 않는 특성을 가지고 있어 미국이나 서구유럽의 국가 등 우리보다 산업화가 먼저 이루어진 나라에서는 오염부지 정화 및 관련기술의 개발에 막대한 예산을 투자하고 있다. 그러나 우리나라는 토양오염으로 인한 실태파악이 미비하고 오염부지정화를 위한 관련기술의 개발이 아직 초기단계로 적정관리를 위한 기반이 취약한 설정이다. 따라서 본보에서는 오염부지의 적정 관리를 위해 외국에서 개발·이용되고 있는 정화기술과 오염부지 복구시 관리절차에 대해 살펴보았다.

  • PDF

전기삼투기법에 의한 토양내 유기오염물질의 이동 및 제거 (Transport and Removal of Organic Substances in Soils by Electroosmosis)

  • 정하익
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 1998년도 공동 심포지엄 및 추계학술발표회
    • /
    • pp.48-51
    • /
    • 1998
  • This paper presents the transport and removal of organic substances from the contaminated soft soils and sludges such as marine dredging waste, marine sediments, mine tailing waste, and sewage sludge by electroosmosis. A series of laboratory experiments including variable conditions such as contamination levels, solid contents, and applied voltage rates were peformed with the contaminated soft clay specimen mixed with organic substance. Investigated are specimen density, dewatering rate, outflow rate, and outflow concentration. The test results showed that organic substances in the soils were removed by applied voltages. The results indicated that this process can be used efficiently to clean up the contaminated soil.

  • PDF

$TiO_2$-MMT를 이용한 디젤오염 철도토양의 개선방안에 관한 연구 (A Study on Remediation Method of Diesel-Contaminated Railroad Soil using $TiO_2$-MMT)

  • 양영민;허현수;이재영;이철규;전유미
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2870-2874
    • /
    • 2011
  • Soil pollution around railroad has been occurred mainly by diesel and lubricant oil, which is difficult to treat due to high carbon number. In this study, we investigated the feasibility of inorganic-inorganic nanohybrid photo-catalyst for the remediation of diesel-contaminated railroad soil. Generally, the $TiO_2$ nanoparticle easily removes organic pollutants due to photo and natural clay of layer structure. Also, montmorillonite (MMT) have an excellent absorption property with organic component. So, we prepared $TiO_2$ pillared MMT nanohybrid photo-catalyst as a chemical oxidant through the integration of theses advantage. As a result, the removal efficiency of diesel was more than 45% at a laboratory-scale test with diesel concentration and the amount of $TiO_2$-MMT. In future, we will improve the removal efficiency of diesel to optimize experimental parameters and apply the field soil The remediation method using photo-catalyst can be used to clean up the railroad soil polluted with high concentration instead of common methods such as soil washing, bioremediation, etc..

  • PDF

연직배수재에 의한 토양오염물질 추출에 지반의 투수계수가 미치는 영향분석 (Analysis on Effects of Permeability in Contaminated Area on Extraction of Contaminants from Soil Using Vertical Drains)

  • 이행우;장병욱;강병윤
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.373-381
    • /
    • 2005
  • The permeability of contaminated soil and elapsed time are important considering factors to in-situ soil remadiation. Gabr et. al. (1996) derived the solution equation of contaminant concentration ratio as initial one (C/$C_0$) with time and spatial changes in contaminated area which embedded with vertical drains. The contaminant concentration ratio (C/$C_0$) is analyzed with time and spatial changes in three different permeability areas which are $k=l.0{\times}10^{-5,}$ $l.0{\times}l0^{-6,}$ $l.0{\times}l0^{-7}\;_{m/s}$ by using the Gabr's equation. Results from numerical analysis indicate that the ratio (C/$C_0$) decreases as the elapsed time increases in every point, however, remediation efficiency decreases as the analyzing point is far from injection well to extraction one and is deeper from top level of contaminated area. And also it decreases as the permeability of contaminated area decreases. Especially, the lower permeability of contaminated area effects directly on the soil remediation, in this research, under condition which the permeability of contaminated area is $l.0{\times}l0^{-7}\;_{m/s}$, the maximum time needed to attain 90% clean up level ($t_{90}$) is 65,690 hours(7.5 years), it takes so much time to clean the low permeability contaminated soil.

  • PDF

지구통계 기법을 활용한 토양 오염범위 산정 및 불확실성 평가 (Evaluation of Geostatistical Approaches for better Estimation of Polluted Soil Volume with Uncertainty Evaluation)

  • 김호림;김경호;윤성택;황상일;김형돈;이군택;김영주
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권6호
    • /
    • pp.69-81
    • /
    • 2012
  • Diverse geostatistical tools such as kriging have been used to estimate the volume and spatial coverage of contaminated soil needed for remediation. However, many approaches frequently yield estimation errors, due to inherent geostatistical uncertainties. Such errors may yield over- or under-estimation of the amounts of polluted soils, which cause an over-estimation of remediation cost as well as an incomplete clean-up of a contaminated land. Therefore, it is very important to use a better estimation tool considering uncertainties arising from incomplete field investigation (i.e., contamination survey) and mathematical spatial estimation. In the current work, as better estimation tools we propose stochastic simulation approaches which allow the remediation volume to be assessed more accurately along with uncertainty estimation. To test the efficiency of proposed methods, heavy metals (esp., Pb) contaminated soil of a shooting range area was selected. In addition, we suggest a quantitative method to delineate the confident interval of estimated volume (and spatial extent) of polluted soil based on the spatial aspect of uncertainty. The methods proposed in this work can improve a better decision making on soil remediation.