• Title/Summary/Keyword: Remedial efficiency

Search Result 24, Processing Time 0.025 seconds

The Study of Crude Oil Contaminated Soil Remediation by Indirect Thermal Desorption (간접열탈착방식을 이용한 원유오염토양 정화효율 평가)

  • Lee, In;Kim, Jong-Sung;Jung, Tae-Yang;Oh, Seung-Taek;Kim, Guk-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.14-20
    • /
    • 2016
  • Remediation of crude oil contaminated soil is complicate and hard to apply traditional methods because of its persistency, durability, and high viscosity. Therefore, in this study, the efficiency of crude oil contaminated soil remediation was tested by developing a pilot-scale thermal desorption system using the indirect heating method with an exhaust gas treatment. Under optimal condition drawed by temperature and retention time, the remedial efficiency of crude oil contaminated soil and treatability of exhaust gas were analyzed. Total Petroleum Hydrocarbon (TPH) concentration of crude oil contaminated soil was decreased to 69.7 mg/kg on average and the remedial efficiency was measured at 99.60%. Through the exhaust gas, 86.0% of Volatile Organic Compounds (VOC) was degraded and 97.16% of complex malodor was reduced under the suggested optimum operation condition. This study provides important basic data to be useful in scaling up of the indirect thermal desorption system for the remediation of crude oil contaminated soil.

A study on results of short-course chemotherapy of patients with pulmonary tuberculosis registered at Seoul city health centers (서울시 보건소에 등록된 폐결핵환자의 단기치료성적에 관한 연구)

  • Park, Hye-Sook;Ha, Eun-Hee;Wie, Cha-Hyung
    • Journal of Preventive Medicine and Public Health
    • /
    • v.28 no.2 s.50
    • /
    • pp.487-496
    • /
    • 1995
  • This study was performed for the comparison of the therapeutic efficiency between 6-month (2HERZ/4HER) and 9-month (9HER) short-course chemotherapy under the programe conditions for pulmonary tuberculosis in terms of sputum AFB negative conversion rate, remedial interruption rate and cost effectiveness analysis. Two hundreds and ninty three patients treated with 9HER and 641 treated with 2HERZ/4HER had been discharged from 22 health centers in Seoul from May 1, 1993 to April 30, 1994. Seven hundreds and seventeen was subsequently analysed excluding 217 patients due to remedial interruption. The results : 1. Bacteriological negative conversion rate in 9HER regimen and 2HERZ/4HER regimen was 97.8% and 96.4% respectively(p>0.05). But the early treatment period, negative conversion rate in 2HERZ/4HER regimen was very higher than in 9HER regimen(p<0.01). 2. Remedial interruption rate for 9HER regimen and 2HERZ/4HER regimen was 34.1% and 13.6% respectively. The primary reason for the interruption was transfering to other clinics and this interruption was high within 3months. 3. Cost effectiveness for 2HERZ/4HER regimen was higher than 9HER regimen. The difference cost effectiveness ratio was 2.33 at the first sputum test and 1.69 at the last sputum test.

  • PDF

Analysis of Heavy Metal Contaminated Soils Remediation Using Reactive Drains (반응성 배수재를 이용한 중금속 오염토양의 정화효율 분석)

  • Park, Jeongjun;Choi, Changho;Shin, Eunchul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.29-38
    • /
    • 2013
  • This paper presents the analysis condition of remediation technique of contaminated fine-grained soil and physical properties of bio-degradable drain for analysis site applicability using bio-degradable drain method. As the result, two kinds of developed degradable drains (cylindricality shaped and harmonica shaped) are satisfied the Korean Industrial Standard. And the cylindricality shaped drain has an excellent discharge capacity than that of another one. By the results of laboratory test, the citric acid is chosen as the washing agent because it has low toxicity, so it is able to minimize harmful influence to environment. Furthermore the subject contaminants were selected as Cd, Cu and Pb. Based on the field pilot test results, the most remedial efficiency is the use of reactive material applied in bio-degradable drain method with the process of injecting the washing agent and extraction of contaminated fluid.

A Study of Structual Improvement and Efficiency Progress of a Nebulizer (네블라이져의 구조개선 및 효율향상)

  • 정혁진;백규열;김우식;김남호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.3
    • /
    • pp.55-60
    • /
    • 2002
  • Nebulizer which is on sale in our country has many problems like noise and efficiency In order to solve these problems, we used 0.6[kg/$\textrm{cm}^2$] moter in made of the Diaphragm instead of 2.5[kg/$\textrm{cm}^2$] piston type to reduce noise art output power. Nozzle in the core of the Nebulizer was made of the wild collision cross-section and slope of the fluid in detail. It is found that we could be significantly improve remedial value by doing these efforts.

The Remediation Characteristics of Natural Soil according to ElectroKinetic Remediation Systems under Unsaturated Conditions (불포화 자연토의 동전기 시스템에 따른 정화 특성)

  • Kim, Byung-Il;Kim, Ki-Nyun;Han, Sang-Jae;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.873-881
    • /
    • 2004
  • A serious of EK remediation tests on contaminated soil are performed under unsaturated conditions and analyzed for electrical potential, water content, pH and so on. The results indicated that electrical potential and pH distributions in the sample are dependent on the amount and inward/outward flow of hydrogen ion. Specially, for the closed system the water content is largely decreased with the flow of hydrogen. The maximum electrical conductivity is measured at the catholyte of CEM(Sealing) test and directly related to the remedial efficiency. Although pHs in the region near to the anode are similarly developed, the different concentration of lead is measured with the electrical gradient contrary to the lead concentration dependent on pH within the sample.

  • PDF

Development a numerical model of flow and contaminant transport in layered soils

  • Ahmadi, Hossein;Namin, Masoud M.;Kilanehei, Fouad
    • Advances in environmental research
    • /
    • v.5 no.4
    • /
    • pp.263-282
    • /
    • 2016
  • Contaminant transport in groundwater induces major threat and harmful effect on the environment; hence, the fate of the contaminant migration in groundwater is seeking a lot of attention. In this paper a two dimensional numerical flow and transport model through saturated layered soil is developed. Groundwater flow and solute transport has been simulated numerically using proposed model. The model implements the finite volume time splitting method to discretize the main equations. The performance, accuracy and efficiency of the out coming numerical models have been successfully examined by two test cases. The verification test cases consist of two-dimensional, groundwater flow and solute transport. The final purpose of this paper is to discuss and compare the shape of contaminant plume in homogeneous and heterogeneous media with different soil properties and control of solute transport using a zone for minimizing the potential of groundwater contamination; furthermore, this model leads to select the effective and optimum remedial strategies for cleaning the contaminated aquifers.

Assessment of Soil Washing Efficiency for Arsenic Contaminated Site Adjacent to Jang Hang Refinery (장항제련소 주변 비소오염토양의 특성분석에 따른 토양세척 처리효율 평가)

  • Moon, So-Young;Oh, Min-Ah;Jung, Jun-Kyo;Choi, Sang-Il;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.1
    • /
    • pp.71-81
    • /
    • 2011
  • Cause of contamination in the study area nearby Jang Hang Refinery is dust scattering in refinery stack, and soil washing treatment is one of the proper technologies for soil remediation in this area. Site conditions frequently limit the selection of a treatment process. A treatment technology may be eliminated based on the soil classification or physicochemical characteristics of soil. This study was assessed the soil washing efficiency by conducting of soil characteristic analysis in the vicinity of Jang Hang Refinery Stack within a 2 km radius. Also, it was decided about remedial range with comparative analysis of As in soil by Korean Standard Test Method before/after revision, whereupon As concentration in soil showed a increasing tendency after revision. As a result, the soil washing using the size separation of soil was determined through identifying of As species in the soil. In this site, only particle size distribution and water content of soil can provide the initial means of screening for the potential use of soil washing.

Drug Targeting to Lungs by Way of Microspheres

  • Harsha, N. Sree;Rani, R.H. Shobha
    • Archives of Pharmacal Research
    • /
    • v.29 no.7
    • /
    • pp.598-604
    • /
    • 2006
  • In many conventional drug delivery systems in vogue, failure to deliver efficient drug delivery at the target site/organs; is evident as a result, less efficacious pharmacological response is elicited. Microspheres can be derived a remedial measure which can improve site-specific drug delivery to a considerable extent. As an application, Lung-targeting Ofloxacin-loaded gelatin microspheres (GLOME) were prepared by water in oil emulsion method. The Central Composite Design (CCD) was used to optimize the process of preparation, the appearance and size distribution were examined by scanning electron microscopy, the aspects such as in vitro release characteristics, stability, drug loading, loading efficiency, pharmacokinetics and tissue distribution in albino mice were studied. The experimental results showed that the microspheres in the range of $0.32-22\;{\mu}m$. The drug loading and loading efficiency were 61.05 and 91.55% respectively. The in vitro release profile of the microspheres matched the korsmeyer’s peppas release pattern, and release at 1h was 42%, while for the original drug, ofloxacin under the same conditions 90.02% released in the first half an hour. After i.v. administration (15 min), the drug concentration of microspheres group in lung in albino mice was $1048\;{\mu}g/g$, while that of controlled group was $6.77\;{\mu}g/g$. GLOME found to release the drug to a maximum extent in the target tissue, lungs.

Characteristics of Electrokinetic Remediation of Unsaturated Soil I : Experimental Study (불포화토의 동전기 정화 특성 I : 실험적 연구)

  • Kim, Byung Il;Han, Sang Jae;Kim, Soo Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.1-8
    • /
    • 2006
  • The purpose of this study is to experimentally analysis the eletrokinetic phenomena and remediation characteristics developed during the application of electrokinetic remediation technique to unsaturated soils contaminated by heavy metals. In the laboratory a series of column tests are performed on degree of saturation for shooting range soil. The test results indicated that Pb is mainly removed under unsaturated conditions by electromigration within diffuse double layer, and if the initial containment concentration is below cation exchange capacity and equals to adsorption per unit soil solid weight, the remedial efficiency decreases with the decreasing of transport efficiency due to the changes in the degree of saturation in the electric gradient of 1V/cm.

Towards More Efficient Energy Use for Green Remediation (녹색정화를 위한 에너지의 효율적 이용)

  • Hwang, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.95-100
    • /
    • 2009
  • Strategies incorporating more efficient energy use into remediation of contaminated sites, which are those of important elements in green remediation, are developed and discussed in this work. Firstly, from several case studies of remedial actions in Korea, thermal desorption and/or in-situ method including pump-and-treat were found energy intensive and soil washing less intensive. In order to use energy efficiently and minimize use of fossil fuels during land revitalization process, it is necessary to optimize energy intensive systems, to use low energy remediation systems (such as bioremediation), and to integrate renewable energy sources. Furthermore, economic incentive systems such as subsidy need to be adopted if renewable energy sources are incorporated into remediation of contaminated sites.