• Title/Summary/Keyword: Reliable transfer

Search Result 445, Processing Time 0.028 seconds

A Study on the Topology Design Algorithm for Common Channel Signalling Network (공통선 신호망의 토폴로지 설계 알고리즘에 관한 연구)

  • 이준호;김중규;이상배;박민용
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.5
    • /
    • pp.369-381
    • /
    • 1991
  • In this paper, design algorithms for SMP(Single Mated Pair) and MMP (Multipli Mated Pair) structure of CCS (Common Channel Signaling) network are proposed through the study of the structure of CCS network. High reliability and fast messagy transfer time are the most important requirements for the CCS network. Based on it, three parameters such as monotraffic, reliability (maximum isolated SP(Signalling Point) number when any two STP(Signalling Transfer Points) fail and total network cost are defined. And the proposed algorithms different from preexisted algorithm that minimizes total network cost, maximize monotraffic with two constraints, reliability and total network cost. Comparing the experimental results of the proposed algorithms with those of the preexisted algorithm that minimizes total network cost, shows that the proposed algorithms produce a more reliable topology that has more monotraffic and a little higher total network cost. Additionaly, with the results of the proposed algorithms, SMP and MMP structures are compared.

  • PDF

The Formation Technique of Thin Film Heaters for Heat Transfer Components (열교환 부품용 발열체 형성기술)

  • 조남인;김민철
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.4
    • /
    • pp.31-35
    • /
    • 2003
  • We present a formation technique of thin film heater for heat transfer components. Thin film structures of Cr-Si have been prepared on top of alumina substrates by magnetron sputtering. More samples of Mo thin films were prepared on silicon oxide and silicon nitride substrates by electron beam evaporation technology. The electrical properties of the thin film structures were measured up to the temperature of $500^{\circ}C$. The thickness of the thin films was ranged to about 1 um, and a post annealing up to $900^{\circ}C$ was carried out to achieve more reliable film structures. In measurements of temperature coefficient of resistance (TCR), chrome-rich films show the metallic properties; whereas silicon-rich films do the semiconductor properties. Optimal composition between Cr and Si was obtained as 1 : 2, and there is 20% change or less of surface resistance from room temperature to $500^{\circ}C$. Scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) were used for the material analysis of the thin films.

  • PDF

A comparison study of approximate and Monte Carlo radiative transfer methods for late type galaxy models

  • Lee, Dukhang;Baes, Maarten;Seon, Kwang-il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.49.3-50
    • /
    • 2016
  • Two major radiative transfer (RT) techniques have been developted to model late-type galaxies: approximate RT and Monte Carlo (MC) RT. In the approximate RT, first proposed by Kylafis & Bahcall, only two terms of unscattered (direct) and single-scattered intensities are computed and higher-order multiple scattering components are approximated, saving computing time and cost compared to MC RT. However, the approximate RT can yield errors in regions where multiple scattering effect is significant. In order to examine how significant the errors of the approximate RT are, we compare results of the approximate RT with those of SKIRT, a state-of-the-art MC RT code, which is basically free from the approximation errors by fully incorporating all the multiple scattered intensities. In this study, we present quantitative errors in the approximate RT for late type galaxy models with various optical depths and inclination angles. We report that the approximate RT is not reliable if the central face-on optical depth is intermediate or high (${\tau}_V$ > 3).

  • PDF

Homogeneous and Stable P-Type Doping of Graphene by MeV Electron Beam-Stimulated Hybridization with ZnO Thin Films

  • Song, U-Seok;Kim, Yu-Seok;Jeong, Min-Uk;Park, Jong-Yun;An, Gi-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.145.1-145.1
    • /
    • 2013
  • A prerequisite for the development of graphene-based field effect transistors (FETs) is reliable control of the type and concentration of carriers in graphene. These parameters can be manipulated via the deposition of atoms, molecules, and polymers onto graphene as a result of charge transfer that takes place between the graphene and adsorbates. In this work, we demonstrate a unique and facile methodology for the homogenous and stable p-type doping of graphene by hybridization with ZnO thin films fabricated by MeV electron beam irradiation (MEBI) under ambient conditions. The formation of the ZnO/graphene hybrid nanostructure was attributed to MEBI-stimulated dissociation of zinc acetate dihydrate and a subsequent oxidation process. A ZnO thin film with an ultra-flat surface and uniform thickness was formed on graphene. We found that homogeneous and stable p-type doping was achieved by charge transfer from the graphene to the ZnO film.

  • PDF

Analysis on the Cooling Characteristics of a Channel with Pin-Fin Structure (핀-휜 구조물을 이용한 채널의 냉각특성 해석)

  • 신지영;손영석;이대영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.667-673
    • /
    • 2003
  • Recent trends in the electronic equipment indicate that the power consumption and heat generation in a chip increase as the components are miniaturized and the computing speed becomes faster. Suitable heat dissipation is required to ensure the guaranteed performance and reliable operation of the electronic devices. The aim of the present study is to investigate the forced-convective thermal-hydraulic characteristics of a pin-fin heat exchanger as a candidate for cooling system of the electronic devices. The influence of the structure of the pin-fin assembly on heat transfer is investigated by porous medium model. The results are compared with the experimental data or correlations of several researchers for the heat transfer coefficients for the channel flow with pin-fin arrays. Finally, the effects of design parameters such as the pin-fin diameter and the spacing are examined.

Researches for the Development of High Reliable ATS (고 신뢰성 ATS 개발에 관한 연구)

  • Yang, Oh;Min-Ho, Kim
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2883-2885
    • /
    • 2000
  • ATS(Automatic Transfer Switch), the secondary power supply system prepared for' temporary power fail on main in KEPCO in industrial field or running a important system. is developed. In this development, we prove that the proposed system is safe with results in a few environment testing focused on a solution against a poor environment by making virtual environment for a solution on problems of system reliability to switch more safely.

  • PDF

What are Technical Hurdles of Verification for North Korea's Nuclear Program?

  • Choi, Sungyeol;Jun, Eunju
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.111-118
    • /
    • 2022
  • The denuclearization of North Korea was unpredictable and resulted in radical changes. Despite the skepticism and disappointment surrounding denuclearization, it is important for certain verification technologies to establish what is technically possible or practically impossible, and how reliable these technical means are. This article presents the technical hurdles in nuclear verification by systematically categorizing them into issues of correctness and completeness. Moreover, it addresses the safety and security risks during the denuclearization process, including the radiological impact on humans, environmental effects, and the illegal transfer of material, information, and technologies.

Design of Underwater Ad-hoc Communication Protocol for Underwater Acoustic Networks

  • Yun, Chang-Ho;Cho, A-Ra;Kim, Seung-Geun;Park, Jong-Won;Choi, Young-Chol;Lim, Yong-Kon
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.6-12
    • /
    • 2010
  • In this paper a cross layer protocol, referred to as an underwater ad-hoc communication (UAC) protocol, is proposed for underwater acoustic networks (UANets). An underwater node (UN), which tries to transfer data to another UN or a buoy in ad-hoc manner, can access channel as well as determine routing path by employing the UAC protocol. The channel access, route determination, and reliable data transfer are designed being adaptive to underwater environments. In addition, we propose both UN and packet architectures in order to efficiently implement the UAC protocol for UANets.

The Heat Transfer Analysis of the First Stage Blade (발전용 가스터빈 1단 동익 열전달 해석)

  • Hong, Yong-Ju;Choi, Bum-Seog;Park, Byung-Gyu;Yoon, Eui-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.30-35
    • /
    • 2001
  • To get higher efficiency of gas turbine, The designer should have more higher turbine inlet temperature (TIT). Today, modem gas turbine having sophisticated cooling scheme has TIT above $1,700^{\circ}C$. In the korea, many gas turbine having TIT above $1,300^{\circ}C$ was imported and being operated, but the gas with high TIT above $1,300^{\circ}C$ in the turbine will give damage to liner of combustor, and blade of turbine and etc. So frequently maintenance for parts enduring high temperature was performed. In this study, the heat transfer analysis of cooling air in the internal cooling channel (network analysis) and temperature analysis of the blade (Finite Element Analysis) in the first stage rotor was conducted for development of the optimal cooling passage design procedure. The results of network analysis and FEM analysis of blade show that the high temperature spot are occured at the leading edge, trailing edge near tip, and platform. so to get more reliable performance of gas turbine, the more efficient cooling method should be applied at the leading edge and tip section. and the thermal barrier coating on the blade surface has important role in cooling blade.

  • PDF

Design of a Pin-Fin Structure in a Channel Considering the Heat Transfer and Pressure Drop Characteristics (열전달 및 압력강하 특성을 고려한 채널 내 핀-휜 구조물의 설계)

  • Shin, Jee-Young;Son, Young-Seok;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.459-467
    • /
    • 2006
  • Rapid development of electronic technology requires small size, high density packaging and high power in the electronic devices, which results in more heat generation. Suitable heat dissipation is required to ensure the guaranteed performance and reliable operation of the current state-of-the-art electronic equipment. The aim of the present study is to find out the forced-convective thermal-hydraulic characteristics of a pin-fin heat exchanger as a candidate for cooling system of the electronic devices through the analysis and experiment. Various configuration of the pin-fin array is selected in order to find out the effect of spacing and diameter of the pin-fin on the heat transfer and pressure drop characteristics. Experimental results are compared with the analyses and correlations of several researchers. Finally, the design guide are provided for the required pressure drop and/or the heat transfer characteristics of the heat exchanger.