• Title/Summary/Keyword: Reliable prediction

Search Result 854, Processing Time 0.029 seconds

A Prediction of Wafer Yield Using Product Fabrication Virtual Metrology Process Parameters in Semiconductor Manufacturing (반도체 제조 가상계측 공정변수를 이용한 웨이퍼 수율 예측)

  • Nam, Wan Sik;Kim, Seoung Bum
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.6
    • /
    • pp.572-578
    • /
    • 2015
  • Yield prediction is one of the most important issues in semiconductor manufacturing. Especially, for a fast-changing environment of the semiconductor industry, accurate and reliable prediction techniques are required. In this study, we propose a prediction model to predict wafer yield based on virtual metrology process parameters in semiconductor manufacturing. The proposed prediction model addresses imbalance problems frequently encountered in semiconductor processes so as to construct reliable prediction model. The effectiveness and applicability of the proposed procedure was demonstrated through a real data from a leading semiconductor industry in South Korea.

Evolutionary Computing Driven Extreme Learning Machine for Objected Oriented Software Aging Prediction

  • Ahamad, Shahanawaj
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.232-240
    • /
    • 2022
  • To fulfill user expectations, the rapid evolution of software techniques and approaches has necessitated reliable and flawless software operations. Aging prediction in the software under operation is becoming a basic and unavoidable requirement for ensuring the systems' availability, reliability, and operations. In this paper, an improved evolutionary computing-driven extreme learning scheme (ECD-ELM) has been suggested for object-oriented software aging prediction. To perform aging prediction, we employed a variety of metrics, including program size, McCube complexity metrics, Halstead metrics, runtime failure event metrics, and some unique aging-related metrics (ARM). In our suggested paradigm, extracting OOP software metrics is done after pre-processing, which includes outlier detection and normalization. This technique improved our proposed system's ability to deal with instances with unbalanced biases and metrics. Further, different dimensional reduction and feature selection algorithms such as principal component analysis (PCA), linear discriminant analysis (LDA), and T-Test analysis have been applied. We have suggested a single hidden layer multi-feed forward neural network (SL-MFNN) based ELM, where an adaptive genetic algorithm (AGA) has been applied to estimate the weight and bias parameters for ELM learning. Unlike the traditional neural networks model, the implementation of GA-based ELM with LDA feature selection has outperformed other aging prediction approaches in terms of prediction accuracy, precision, recall, and F-measure. The results affirm that the implementation of outlier detection, normalization of imbalanced metrics, LDA-based feature selection, and GA-based ELM can be the reliable solution for object-oriented software aging prediction.

Deep Prediction of Stock Prices with K-Means Clustered Data Augmentation (K-평균 군집화 데이터 증강을 통한 주가 심층 예측)

  • Kyounghoon Han;Huigyu Yang;Hyunseung Choo
    • Journal of Internet Computing and Services
    • /
    • v.24 no.2
    • /
    • pp.67-74
    • /
    • 2023
  • Stock price prediction research in the financial sector aims to ensure trading stability and achieve profit realization. Conventional statistical prediction techniques are not reliable for actual trading decisions due to low prediction accuracy compared to randomly predicted results. Artificial intelligence models improve accuracy by learning data characteristics and fluctuation patterns to make predictions. However, predicting stock prices using long-term time series data remains a challenging problem. This paper proposes a stable and reliable stock price prediction method using K-means clustering-based data augmentation and normalization techniques and LSTM models specialized in time series learning. This enables obtaining more accurate and reliable prediction results and pursuing high profits, as well as contributing to market stability.

Development of a Lightweight Prediction Model of Fuel Injection Rates from High Pressure Fuel Injectors (고압 인젝터의 분사율 예측을 위한 경량 모델 개발)

  • Lee, Sanggwon;Bae, Gyuhan;Atac, Omer Faruk;Moon, Seoksu;Kang, Jinsuk
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.188-195
    • /
    • 2020
  • To meet stringent emission regulations of automotive engines, fuel injection control techniques have advanced based on reliable and fast computing prediction models. This study aims to develop a reliable lightweight prediction model of fuel injection rates using a small number of input parameters and based on simple fluid dynamic theories. The prediction model uses the geometry of the injector nozzle, needle motion data, injection conditions and the fuel properties. A commercial diesel injector and US No. 2 diesel were used as the test injector and fuel, respectively. The needle motion data were measured using X-ray phase-contrast imaging technique under various fuel injection pressures and injection pulse durations. The actual injector rate profiles were measured using an injection rate meter for the validation of the model prediction results. In the case of long injection durations with the steady-state operation, the model prediction results showed over 99 % consistency with the measurement results. However, in the case of short injection cases with the transient operation, the prediction model overestimated the injection rate that needs to be further improved.

High Temperature Creep Life Prediction of Friction Welded Joints by Initial Strain Method and the AE Evaluation (ISM에 의한 마찰용접재(SUH3-SUH35)의 고온크리프 수명예측에 관한 연구)

  • 오세규;이원석
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.40-48
    • /
    • 1997
  • There are many research results as individual uni-axial tension creep test of heat-resisting materials. However, there are very few about the study on the high temperature creep test for the Initial Strain Method, and especially any study on it about the friction welded joints of SUH3 to SUH35. One of the important concerns is a reliable method of evaluating static creep properties. No reliable method seems available at present to evaluate or predict static creep properties. So, the reliable method to evaluate and predict them by the ISM and AE techniques was made.

  • PDF

The estimation of water level fluctuation in the down stream water mark by water level fluctuation in the upper region water mark (상류지점 수위표 수위변동에 따른 하류지점 수위표 수위변동예측)

  • Choi, Han-Kuy;Lim, Yoon-Soo;Baek, Hyo-Seon
    • Journal of Industrial Technology
    • /
    • v.30 no.B
    • /
    • pp.83-89
    • /
    • 2010
  • Generally, the accuracy of the prediction of flood elevation is difficult to identify due to the sedimentation on a river bed, earth and sand being moved by flow, and localized torrential downpours caused by climate change. It is also because of natural and artificial influences on rivers. To predict river floodings successfully, more precise and reliable flood elevation prediction system is needed, in which the concentration time of downstream is numerically interpreted through analyzing and utilizing the watermark of the upper region. Therefore, this research analyzed the prediction methods of the changes in water levels, which use the watermarks of the upper region. The watermarks which impacts the spot being predicted of flood was selected through floodgate analysis and correlation analysis. With the selected watermarks, a statistically reliable regression equation was yielded.

  • PDF

On Predicting with Kernel Ridge Regression

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.1
    • /
    • pp.103-111
    • /
    • 2003
  • Kernel machines are used widely in real-world regression tasks. Kernel ridge regressions(KRR) and support vector machines(SVM) are typical kernel machines. Here, we focus on two types of KRR. One is inductive KRR. The other is transductive KRR. In this paper, we study how differently they work in the interpolation and extrapolation areas. Furthermore, we study prediction interval estimation method for KRR. This turns out to be a reliable and practical measure of prediction interval and is essential in real-world tasks.

  • PDF

Development of the Expert Seasonal Prediction System: an Application for the Seasonal Outlook in Korea

  • Kim, WonMoo;Yeo, Sae-Rim;Kim, Yoojin
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.563-573
    • /
    • 2018
  • An Expert Seasonal Prediction System for operational Seasonal Outlook (ESPreSSO) is developed based on the APEC Climate Center (APCC) Multi-Model Ensemble (MME) dynamical prediction and expert-guided statistical downscaling techniques. Dynamical models have improved to provide meaningful seasonal prediction, and their prediction skills are further improved by various ensemble and downscaling techniques. However, experienced scientists and forecasters make subjective correction for the operational seasonal outlook due to limited prediction skills and biases of dynamical models. Here, a hybrid seasonal prediction system that grafts experts' knowledge and understanding onto dynamical MME prediction is developed to guide operational seasonal outlook in Korea. The basis dynamical prediction is based on the APCC MME, which are statistically mapped onto the station-based observations by experienced experts. Their subjective selection undergoes objective screening and quality control to generate final seasonal outlook products after physical ensemble averaging. The prediction system is constructed based on 23-year training period of 1983-2005, and its performance and stability are assessed for the independent 11-year prediction period of 2006-2016. The results show that the ESPreSSO has reliable and stable prediction skill suitable for operational use.

TRAFFIC-FLOW-PREDICTION SYSTEMS BASED ON UPSTREAM TRAFFIC (교통량예측모형의 개발과 평가)

  • 김창균
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.84-98
    • /
    • 1995
  • Network-based model were developed to predict short term future traffic volume based on current traffic, historical average, and upstream traffic. It is presumed that upstream traffic volume can be used to predict the downstream traffic in a specific time period. Three models were developed for traffic flow prediction; a combination of historical average and upstream traffic, a combination of current traffic and upstream traffic, and a combination of all three variables. The three models were evaluated using regression analysis. The third model is found to provide the best prediction for the analyzed data. In order to balance the variables appropriately according to the present traffic condition, a heuristic adaptive weighting system is devised based on the relationships between the beginning period of prediction and the previous periods. The developed models were applied to 15-minute freeway data obtained by regular induction loop detectors. The prediction models were shown to be capable of producing reliable and accurate forecasts under congested traffic condition. The prediction systems perform better in the 15-minute range than in the ranges of 30-to 45-minute. It is also found that the combined models usually produce more consistent forecasts than the historical average.

  • PDF

Pipeline wall thinning rate prediction model based on machine learning

  • Moon, Seongin;Kim, Kyungmo;Lee, Gyeong-Geun;Yu, Yongkyun;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4060-4066
    • /
    • 2021
  • Flow-accelerated corrosion (FAC) of carbon steel piping is a significant problem in nuclear power plants. The basic process of FAC is currently understood relatively well; however, the accuracy of prediction models of the wall-thinning rate under an FAC environment is not reliable. Herein, we propose a methodology to construct pipe wall-thinning rate prediction models using artificial neural networks and a convolutional neural network, which is confined to a straight pipe without geometric changes. Furthermore, a methodology to generate training data is proposed to efficiently train the neural network for the development of a machine learning-based FAC prediction model. Consequently, it is concluded that machine learning can be used to construct pipe wall thinning rate prediction models and optimize the number of training datasets for training the machine learning algorithm. The proposed methodology can be applied to efficiently generate a large dataset from an FAC test to develop a wall thinning rate prediction model for a real situation.