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Abstract

 Kernel machines are used widely in real-world regression tasks. 
Kernel ridge regressions(KRR) and support vector machines(SVM) are 
typical kernel machines. Here, we focus on two types of KRR. One is 
inductive KRR. The other is transductive KRR. In this paper, we study 
how differently they work in the  interpolation and extrapolation areas. 
Furthermore, we study prediction interval estimation method for KRR. 
This turns out to be a reliable and practical measure of prediction interval 
and is essential in real-world tasks. 

Keywords : Kernel ridge regression, prediction interval, 
             transductive inference.

1. Introduction

  In the case of noisy learning data, the use of traditional neural networks due 

to its learning method often leads to poor generalization and overfitting. Kernel 

machines such as support vector machine(SVM) and kernel ridge regression(KRR) 

were designed to overcome these problems. Foundations of SVM and KRR were 

established by Vapnik(1995) and Saunders et al. (1998), respectively. Kernel 

machines are used widely in real-world regression tasks. Here, we focus on two 

types of KRRs. One is inductive KRR. The other is transductive KRR. In this 

paper, we study how differently they work in terms of interpolation and 

extrapolation. Furthermore, we study prediction interval estimation method for 
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KRR. This turns out to be a reliable and practical measure of confidence bound 

and is essential in real-world tasks.

  To review KRRs, we need to take lots of materials from Chapelle et al.(1999). 

Suppose there exists a function y
*
= f 0 ( x )  from which we observe the 

measurements corrupted with noise

            { ( x i, y i ), i= 1,…,l } , y i= y
*
i +ε i .                         (1)

Find an algorithm A  that using both the given set of training data (1) and the 

given set of test data 

                       { x l+1,…, x l+m }                                   (2)

selects from a set of functions { x ↦ f ( x ) }  a function

     y= f ( x ) = fA ( x∣x 1, y 1,… x l, y l, x l+1,…, x l+m )                   (3)

and minimizes at the points of interest the functional

                                                                              

   R (A ) = E ( ∑
l+m

i= l+1
( y
*
i - fA ( x∣x 1, y 1, … x l, y l, x l+1,…, x l+m ) )

2 )       (4)
where expectation is taken over x  and ε . For the training data we are given 

the vectors x  and the value y , for the test data we are only given x .

  Usually, the problem of estimating values of a function at points of interest is 

solved in two steps: first in a given set of functions f ( x, α ), α ∈Λ  one 

estimates the regression function which minimizes the functional 

           R ( α ) = ⌠
⌡( ( y- f ( x, α ))

2dF ( x,y )                            (5)

(the inductive step) and then using the estimated function y= f ( x, α l )  we 

calculate the values at points of interest 

                       y
*
i = f ( x

*
i, α l )                                     (6)

(the deductive step). 

2. Kernel Ridge Regression and the Leave-One-Out procedure

  For the discussion of the classical two-step (inductive plus deductive) KRR 

we consider the set of functions linear in their parameters 

                    f ( x, α l ) = ∑
H

i=1
α iφ i ( x ) .                              (7)

In the case of KRR we use a kernel function K ( x i, x )  as basis function 

φ i ( x )  and H  equals to the sample size l . Notice that the first component of 

input vector x  is 1 and the rest of components are actual input variables. To 
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minimize the expected loss (5), we minimize the following empirical functional   

         R emp ( α ) =
1
l ∑

l

i=1
( y i- f ( x i, α ))

2+ γ∥α∥2                    (8)

where γ  is a fixed positive constant, called the regularization parameter. The 

minimum is given by the vector of coefficients

        α l = α ( x 1, y 1, … x l, y l ) = (K
tK+ γ I l )

-1Kt y                    (9)

where y = (y 1 , …, y l )
t  and K  is a matrix with elements,

            K ij= K ( x i, x j ), i=1,…,l, j=1,…,l .                      (10)

Notice that the vector of coefficients in Saunders(1998) is given by 

                  α l = 2γ (K+ γ I l )
-1 y .                                (11)

These are a little different. Now, the problem is to choose the value γ  which 

provides small expected loss for training on a sample 

Sl= { ( x 1, y 1 ) , …, ( x l, y l ) } . For this purpose, we would like to choose γ  such 

that f γ  minimizing (8) also minimizes 

        R = ⌠
⌡( y

*- f γ ( x
*∣Sl ))

2dF ( x *,y * )dF (Sl )                     (12)

Since F ( x,y )  is unknown, we cannot estimate this minimum directly. To solve 

this problem we use the leave-one-out(LOO) procedure, which is an unbiased 

estimator of (12). The LOO error of an algorithm on the training sample S l  is 

         T l oo (γ ) =
1
l ∑

l

i=1
( y i- f γ ( x i∣Sl＼( x i,y i ) )

2                    (13)

The minimum over γ  of (13) we consider as the minimum over γ  of (12) 

since the expectation of (13) coincides with (12).

  For KRR, we can derive a closed form expression for the LOO error. 

Denoting 

                   A-1γ = ( KtK+ γ I l )
-1                                (14)

the error incurred by the LOO procedure is 

           T l oo (γ ) =
1
l ∑

l

i=1 (
y i- k

t
i A

-1
γ K

t y

1 - k ti A
-1
γ k i )

2

                      (15)

where k t= (K ( x 1, x t ) , …,K ( x l, x t ) )
t . Let γ=γ0  be the minimum of 

(15). Then the vector

                 y 0 = K
*
( K

t
K+ γ0I l )

-1
K
t y                            (16)

where 

            K * =
ꀌ

ꀘ

︳︳︳︳

ꀍ

ꀙ

︳︳︳︳

K ( x 1, x l+1 ) … K ( x l, x l+1 )
⋯ ⋯

K ( x 1, x l+m ) … K ( x l, x l+m )

                     (17)
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is the KRR estimate of the unknown values ( y*l+1 ,…, y
*
l+m ) .

3. Leave-One-Out Error for Transductive Inference

  In transductive inference, our goal is to find an algorithm A  which minimizes 

the functional (4) using both the training data (1) and the test data (2). We 

suggest the following method: predict ( y
*
l+1 ,…, y

*
l+m )  by finding those values 

which minimize the LOO error of KRR training on the joint set 

     ( x 1, y 1 ),…, ( x l, y l ), ( x l+1, y
*
l+1 ),…, ( x l+m, y

*
l+m )                (18)

This is achieved in the following way. Suppose we treat the unknown values 

y *m= ( y
*
l+1 ,  …, y

*
l+m )  as variables and for some fixed value of these variables  

 we minimize the following empirical functional

R emp ( α∣y
*
m ) =

1
l ( ∑

l

i=1
( y i- f ( x i, α ))

2+ ∑
l+m

i= l+1
( y*i - f ( x i, α ))

2) + γ∥α∥2 .   (19)

This functional differs only in the second term from the functional (8) and 

corresponds to performing KRR with the extra pairs 

( x l+1, y
*
l+1 ),…, ( x l+m, y

*
l+m ) . 

  Suppose that vector y * = ( y
*
l+1 ,…, y

*
l+m )

t  is taken from some set y *∈ Y 

such that the pairs ( x l+1, y
*
l+1 ),…, ( x l+m, y

*
l+m )  can be considered as a 

sample drawn from the distribution  as the pairs ( x 1, y
*
1 ) , …, ( x l, y

*
l ) . In this 

case the LOO error of minimizing (19) over the set (18) approximates the 

functional (4). Using the closed form (15) one obtains               

T l oo (γ∣y
*
l+1 ,…,y

*
l+m ) =

1
l+m ∑

l+m

i=1

ꀌ

ꀘ

︳︳︳
y i- k

t
i A

-1
γ K

t y

1 - k ti A
-1
γ k i

ꀍ

ꀙ

︳︳︳

2

                (20)

where we denote x= ( x 1,…, x l+m )
t  and y = (y 1,…,y l,y

*
l+1,…,y

*
l+m )

t , 

and  

                   A
-1
γ = ( K

t
K+ γ I l+m )

-1                             (21)

           K=
ꀌ

ꀘ

︳︳︳︳

ꀍ

ꀙ

︳︳︳︳

K ( x 1, x 1 ) … K ( x 1, x l+m )
⋯ ⋯

K ( x l+m, x 1 ) … K ( x l+m, x l+m )

                    (22)

             k t= (K ( x t, x 1 ) … K ( x t, x l+m ) )                        (23)

  Now let us rewrite the expression (20) in an equivalent form to separate the 

terms with y from the terms with x . Introducing 
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                     C= I l+m- KA
-1
γ K

t ,                              (24)

and the matrix M  with elements 

                      M ij= ∑
l+m

k=1

C ikC kj

C2kk
.                               (25)

We obtain the equivalent expression of (20)

          T l oo (γ∣y
*
l+1 ,…,y

*
l+m ) =

1
l+m

( y tM y ) .                    (26)

In order for the y *  which minimize the LOO procedure to be valid it is 

required that the pairs ( x l+1, y
*
l+1 ),…, ( x l+m, y

*
l+m )  are drawn from the same 

distribution as the pairs ( x 1, y
*
1 ) , …, ( x l, y

*
l ) . To satisfy this constraint we 

choose vectors y *  from the set

                Y = { y *:∥y *- y 0∥
2 ≤R }                            (27)

where the vector y 0  is the solution obtained from classical ridge regression. 

  To minimize (26) under constraint (27) we use the functional 

      T l oo (γ∣y
*
l+1 ,…,y

*
l+m ) = y tM y+ γ*∥y *- y 0∥

2                (28)

where γ *  is a constant depending on R . 

  Now, all that remains is to find the minimum of (28) in y * . Note that the 

matrix M  is obtained using only the vectors x . Therefore, to find the minimum 

of this functional we rewrite (28) as

T l oo (γ ) = y tM 0 y + 2y
* t Mt1 y + y

* tM 2 y
*+ γ*∥y * - y 0∥

2            (29)

where

                         M= ( )
M 0 M 1
Mt1 M 2

                                  (30)

and M 0  is a l× l  matrix, M 1  is a l×m  matrix and M 2  is a m×m  matrix. 

Taking the derivative of (29) in y *  we obtain the condition for the solution

            2Mt1 y + 2M 2 y
*- 2γ*y 0 + 2γ

* y * = 0                        (31)

which gives the predictions

           y * = (γ
*
Im+M 2 )

- 1
( -M

t
1 y + γ

* y 0 )                        (32)

In this transductive KRR we have two parameters to control: γ  and γ
* . The 

choice of γ  can be found using the LOO estimator (15) for KRR. This leaves γ
*  

as the only free parameter.
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4. Prediction Interval Estimation for KRR

  Standard methods for computing prediction intervals in nonlinear regression 

can be effectively applied to neural networks when the number of training points 

is large. However, De Veaux et al.(1998) presented an approach to estimating 

prediction intervals which uses weight decay to fit the network and show that 

this method is effective on a wide range of problems. Since KRR uses weight 

decay, we can estimate prediction intervals for KRR in the same way as De 

Veaux et al.(1998) did. By the way, Seok et al.(2002) considered to estimating 

prediction intervals for standard SVM in a different way.

  It is commonly assumed that the KRR satisfies the nonlinear regression model

                      y = f ( x, α
*
) + ε                                  (33)

where x  represent the inputs, y  the outputs, α
*  the true values of the set of 

parameters, and ε  is the error associated with the function f  in modeling the 

system. Let α  be the least squares estimate of α *  obtained by minimizing the 

error function

                  S ( α ) = ∑
l

i=1
(y i- f ( x, α ) )

2                            (34)

for a training set ( x 1, y 1 ) , …, ( x l, y l ) . The predicted output of the input x 0  

is    

                         y 0 = f ( x 0, α ) .                                 (35)

Assume that ε  is independently and normally distributed with zero means. The 

100(1-α)% confidence interval for the predicted value y 0  is y 0 ± c , where c  

is 

               c = t
α
2
l-p

* s (1 + f t0 (F
t F )-1f 0 )

1
2 .                         (36)

Here, t
α
2
l-p

*  is the inverse of the Student t  cumulative distribution function 

with l-p *  degrees of freedom, evaluated at α/2 , p
*  is the effective number of 

parameters, and s 2 = S ( α )/( l-p *) . In effect, the vector f 0  is given by

             f 0= (
∂f ( x 0, α

* )

∂α
*
1

∂f ( x 0, α
* )

∂α
*
2

…
∂f ( x 0, α

* )

∂α
*
l )

t

              

                 = (K ( x 1, x 0 ) … K ( x l, x 0 ) )                           (37)

and the Jacobian matrix F  is given by 
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          F =

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

∂f ( x 1, α )

∂α1

∂f ( x 1, α )

∂α2
…
∂f ( x 1, α )

∂α l

∂f ( x 2, α )

∂α1

∂f ( x 2, α )

∂α2
…

∂f ( x 2, α )

∂α l
⋯ ⋯ ⋯ ⋯

∂f ( x l, α )

∂α1

∂f ( x l, α )

∂α2
…

∂f ( x l, α )

∂α l

= K .        (38)

Notice that 

                        p * = ∑
l

i=1

λ i
λ i+γ

,                                 (39)

where λ i  is the eigenvalues of F . See for details Vapnik(1998). Replacing α
*  

in (37) by α , we can estimate the prediction interval straightforwardly. 

  De Veaux et al.(1998) showed that the above method for the prediction 

interval works well when training data set is large. However, when the training 

data set is small and the network is trained to convergence, the matrix FtF  can 

be nearly singular. In this case, the estimated prediction intervals are unreliable. 

They suggested using the weight decay method, i.e minimizing the error function

                       S ( α ) + γ∥α∥2                                   (40)

instead of S ( α ) . Following De Veaux et al.(1998), for KRR we get finally the 

prediction interval given by  

  c = t
α
2
n-p

* s (1 + f t0 (F
t F+ γI )-1FtF (Ft F+ γI )-1 f 0 )

1
2 .              (41)

5. Experiments

  (a) The Result of Inductive KRR  (b) The Result of Transductive KRR

Figure 1.  A Comparison of Transductive KRR to Inductive KRR
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  We first examine the shape of the estimated regression functions to compare 

the one-step transductive KRR with the classical two-step inductive KRR in 

terms of interpolation and extrapolation. Artificial data is generated by a simple 

function y = sin x  which is corrupted by Gaussian noise with variance 0.1. This 

function is well used in the papers, for example Gao et al.(2001) related to 

confidence bound. The training data points of size 100 are evenly distributed 

between -2 π  and 2π . The test data points of size 20 are unevenly distributed 

between -2 π  and 2π . The test data points of size 30 are evenly distributed 

between 2π  and 4π . When x > 2π , two KRRs extrapolate the training data. 

Typical results are shown in Figure 1. Two KRRs are implemented with an 

Gaussian kernel function with σ = 1.8, γ = 0.08 for inductive KRR and γ
* = 1.2 

for transductive KRR. The LOO estimator was used to determine these values. 

  In Figure 1, the dotted line indicates the true regression function, and the 

solid line indicates the estimated regression function based on 100 training data 

points between -2 π  and 2π . The points marked with dot and circle are the 

training and test data points, respectively. The points marked with asterisk are the 

estimated values of test data points. As seen from Figure 1, we notice that for 

training data points and test data points in the interpolation area two KRRs work 

very equally well. However, for test data points in the extrapolation area two 

KRRs do not work well. As a whole, two KRRs work in the exactly same way. 

Therefore, at least for this particular data set we can not argue that for test data 

set transductive KRR works better than inductive KRR does, even though 

transductive KRR is developed to improve estimation proficiency for test data. 

Actually, a series of experiments has been conducted, but only results for sine 

function are reported here.      

  Figure 2 illustrates the prediction intervals for KRR. The points marked with 

dot and circle are the training and test data points, respectively. The test data 
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points are only in the extrapolations area. As seen from this figure, we notice that 

prediction intervals are somewhat wide and are wider in the extrapolation area. 

We see that prediction intervals are smooth. It is because KRR uses regularization 

method. This phenomenon happens to the neural networks using weigh dacay.

6. Conclusions

  In this paper we perform transductive inference in the problem of estimating 

values of functions at the points of interest. We demonstrate that estimating the 

unknown values via a one-step transductive KRR is not necessarily more accurate 

than the traditional two-step (inductive plus deductive) KRR. 

  Like De Veaux et al.(1998), we also study an approach to estimating 

prediction intervals for KRR, which uses weight decay to fit the network and 

show that this method is especially simple and effective for kernel machines such 

as SVM and KRR. 
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