• Title/Summary/Keyword: Reliability threshold

Search Result 235, Processing Time 0.026 seconds

Bit-to-Symbol Mapping Strategy for LDPC-Coded Turbo Equalizers Over High Order Modulations (LDPC 부호 기반의 터보 등화기에 적합한 고차 변조 심볼사상)

  • Lee, Myung-Kyu;Yang, Kyeong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5C
    • /
    • pp.432-438
    • /
    • 2010
  • In this paper we study the effect of bit-to-symbol mappings on the convergence behavior of turbo equalizers employing low-density parity-check (LDPC) codes over high order modulations. We analyze the effective SNR of the outputs from linear minimum mean-squared error (MMSE) equalizers and the convergence property of LDPC decoding for different symbol mappings. Numerical results show that the bit-reliability (BR) mapping provides better performance than random mapping in LDPC-coded turbo equalizers over high order modulations. We also verify the effect of symbol mappings through the noise threshold and error performance.

Analysis of Reliability for Different Device Type in 65 nm CMOS Technology (65 nm CMOS 기술에서 소자 종류에 따른 신뢰성 특성 분석)

  • Kim, Chang Su;Kwon, Sung-Kyu;Yu, Jae-Nam;Oh, Sun-Ho;Jang, Seong-Yong;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.792-796
    • /
    • 2014
  • In this paper, we investigated the hot carrier reliability of two kinds of device with low threshold voltage (LVT) and regular threshold voltage (RVT) in 65 nm CMOS technology. Contrary to the previous report that devices beyond $0.18{\mu}m$ CMOS technology is dominated by channel hot carrier(CHC) stress rather than drain avalanche hot carrier(DAHC) stress, both of LVT and RVT devices showed that their degradation is dominated by DAHC stress. It is also shown that in case of LVT devices, contribution of interface trap generation to the device degradation is greater under DAHC stress than CHC stress, while there is little difference for RVT devices.

The development of radiation lifetime measuring module for KAEROT/m2 (KAEROT/m2용 방사선 수명 측정모듈 개발)

  • Lee, Nam-Ho;Kim, Seung-Ho;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.793-796
    • /
    • 2003
  • The electronics of a mobile robot ill nuclear facilities is required to satisfied the reliability to sustain survival in its radiation environment. To know how much radiation the robot has been encountered to replace sensitive electronic parts, a dosimeter to measure total accumulated dose is necessary. Among many radiation dosimeters or detectors, semiconductor radiation sensors have advantages in terms of power requirements and their sires over conventional detectors. This paper describes the use of the radiation-induced threshold voltage change of a commercial power pMOSFET as an accumulated radiation dose monitoring mean and that of the photo-current of a commercial PIN Diode as a dose-rate measurement mean. Commercial p-type power MOSFETs and PIN Diodes were tested in a Co-60 gamma irradiation facility to see their capabilities as radiation sensors. We found an inexpensive commercial power pMOSFET that shows good linearity in their threshold voltage shift with radiation dose and a PIN diode that shows good linearity in its photo-current change with dose-rate. According to these findings, a radiation hardened hybrid electronic radiation dosimeter for nuclear robots has been developed for the first time. This small hybrid dosimeter has also an advantage in the point of view of reliability improvement by using a diversity concept.

  • PDF

Research on Odor Analysis Technology to Secure the Reliability of Air Quality Improvement in Air Conditioners (에어컨디셔너 공기질 개선의 신뢰도 확보를 위한 냄새 분석 기술 연구)

  • Kang, Seok-Hyun;Huh, Pil-Ho;Ahn, Young-Chull
    • Journal of Environmental Science International
    • /
    • v.30 no.1
    • /
    • pp.45-55
    • /
    • 2021
  • In this study, the odor of the parts and the odor of the surrounding environment were classified and verified. In order to increase the reliability of odor quantitative/qualitative analysis, the selection criteria for 5 sensory evaluators were established, and the n-Butanol control solution for each odor intensity was periodically trained to recognize the odor intensity before sensory evaluation. In addition, although various odor thresholds have been used through several studies, verification of whether the odor intensity value obtained through GC/MSD analysis is similar to the degree to which a person directly smells and feels it. It is important to select the odor threshold that has the best correlation with the odor intensity calculated by the person smelling the odor. Finally, sampling and measuring flowing airflow and temporary odors such as odor component analysis was experimentally difficult due to limited collection space and differences in concentration of generated components. In this study, a quantitative analysis was made possible by using the low temperature concentration (cooling) trap method. Through this, it was confirmed that the correlation with the actual odor intensity was not caused by the product itself, but by the environmental factor discharged from the product after creating the odor environment.

Reliability Analysis of Gravity-based Offshore Wind Turbine Foundation Considering Ocean Environmental Loads and Soil Uncertainty (해양환경하중 및 지반의 불확실성을 고려한 중력식 해상풍력 기초의 신뢰성 해석)

  • Lee, Sang Geun;Kim, Dong Hyawn
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.359-365
    • /
    • 2015
  • A reliability analysis of the gravity-based foundation of anoffshore wind turbine was performed by considering the uncertainties of the design variables, including environmental loads. The limit state functions of the gravity-based foundation were defined using the response limits of the support structures suggested in the DNV standard. The wind load couldbe obtained using the GH_bladed software, and the wave load was calculated using the Morison equation. Then, the extreme distributions of the wind and wave loads were estimated by applying the peak over threshold (POT) method to the wind and wave load data. The probability distribution characteristics of the soil properties were defined with reference to a southwest coast geotechnical survey report. The reliability index was evaluated for each failure mode using a first-order reliability method.

Reliability Analysis to Contaminant Migration in Saturated Sandy Soils: Implementation and Verification (포화(飽和)된 사질토(砂質土) 내로의 오염물(汚染物) 이동에 관한 신뢰성(信賴性): 수행(遂行) 및 검증(檢證))

  • Jang, Yeon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.217-227
    • /
    • 1992
  • The first and second-order reliability method(FORM and SORM) is presented using one dimensional finite difference and two dimensional finite element transport models. FORM and SORM can be used without any restrictive assumptions about the properties of the media, and the sensitivity information obtained as part of these analyses is used to identify the parameters which have major influence on the estimate of probability. The reliability analysis of transport in a one-dimensional domain is used to test the robustness of the reliability code and to evaluate the accuracy of the reliability method. A continuous source 2-D example with a concentration threshold limit state function is used to evaluate the influence of the parameters in the location of interest on the reliability solution.

  • PDF

Reliability Optimization Technique for High-Density 3D NAND Flash Memory Using Asymmetric BER Distribution (에러 분포의 비대칭성을 활용한 대용량 3D NAND 플래시 메모리의 신뢰성 최적화 기법)

  • Myungsuk Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.1
    • /
    • pp.31-40
    • /
    • 2023
  • Recent advances in flash technologies, such as 3D processing and multileveling schemes, have successfully increased the flash capacity. Unfortunately, these technology advances significantly degrade flash's reliability due to a smaller cell geometry and a finer-grained cell state control. In this paper, we propose an asymmetric BER-aware reliability optimization technique (aBARO), new flash optimization that improves the flash reliability. To this end, we first reveal that bit errors of 3D NAND flash memory are highly skewed among flash cell states. The proposed aBARO exploits the unique per-state error model in flash cell states by selecting the most error-prone flash states and by forming narrow threshold voltage distributions (for the selected states only). Furthermore, aBARO is applied only when the program time (tPROG) gets shorter when a flash cell becomes aging, thereby keeping the program latency of storage systems unchanged. Our experimental results with real 3D MLC and TLC flash devices show that aBARO can effectively improve flash reliability by mitigating a significant number of bit errors. In addition, aBARO can also reduce the read latency by 40%, on average, by suppressing the read retries.

Structural system reliability-based design optimization considering fatigue limit state

  • Nophi Ian D. Biton;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • v.33 no.3
    • /
    • pp.177-188
    • /
    • 2024
  • The fatigue-induced sequential failure of a structure having structural redundancy requires system-level analysis to account for stress redistribution. System reliability-based design optimization (SRBDO) for preventing fatigue-initiated structural failure is numerically costly owing to the inclusion of probabilistic constraints. This study incorporates the Branch-and-Bound method employing system reliability Bounds (termed the B3 method), a failure-path structural system reliability analysis approach, with a metaheuristic optimization algorithm, namely grey wolf optimization (GWO), to obtain the optimal design of structures under fatigue-induced system failure. To further improve the efficiency of this new optimization framework, an additional bounding rule is proposed in the context of SRBDO against fatigue using the B3 method. To demonstrate the proposed method, it is applied to complex problems, a multilayer Daniels system and a three-dimensional tripod jacket structure. The system failure probability of the optimal design is confirmed to be below the target threshold and verified using Monte Carlo simulation. At earlier stages of the optimization, a smaller number of limit-state function evaluation is required, which increases the efficiency. In addition, the proposed method can allocate limited materials throughout the structure optimally so that the optimally-designed structure has a relatively large number of failure paths with similar failure probability.

Optimal Threshold Setting Method for R Wave Detection According to The Sampling Frequency of ECG Signals (심전도신호 샘플링 주파수에 따른 R파 검출 최적 문턱치 설정)

  • Cho, Ik-sung;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1420-1428
    • /
    • 2017
  • It is difficult to guarantee the reliability of the algorithm due to the difference of the sampling frequency among the various ECG databases used for the R wave detection in case of applying to different environments. In this study, we propose an optimal threshold setting method for R wave detection according to the sampling frequency of ECG signals. For this purpose, preprocessing process was performed using moving average and the squaring function based the derivative. The optimal value for the peak threshold was then detected according to the sampling frequency by changing the threshold value according to the variation of the signal and the previously detected peak value. The performance of R wave detection is evaluated by using 48 record of MIT-BIH arrhythmia database. When the optimal values of the differential section, window size, and threshold coefficient for the MIT-BIH sampling frequency of 360 Hz were 7, 8, and 6.6, respectively, the R wave detection rate was 99.758%.

A Pilot Study for Thermal Threshold Test of Trigeminal Nerve Injuries (삼차신경손상의 온도역치검사에 대한 예비연구)

  • Kim, Mee-Eun
    • Journal of Oral Medicine and Pain
    • /
    • v.37 no.4
    • /
    • pp.243-250
    • /
    • 2012
  • Trigeminal nerve injuries due to invasive dental procedures such as implant surgery and extraction is one of the most serious issues in dentistry and may provoke medico-legal problems. Thus, for objective and reliable assessment of nerve injury, a need of QST (quantitative sensory testing) is emphasized and thermal threshold test is an essential part of QST, reported to have acceptable reliability in the orofacial region. This pilot study aimed to evaluate thermal thresholds for limited cases of trigeminal nerve injures. The study investigated 18 clinical cases with trigeminal nerve injuries who visited Department of Oral Medicine, Dankook Univeristy Dental Hospital during the period from May 2011 to Oct 2012. Thermal thresholds was measured by Thermal Sensory Analyzer, TSA-II (Medoc, Israel). Their CDT(cold detection threshold) was significantly decreased in the affected sides compared to the unaffected sides. Other parameters such as WDT(warm detection threshold), CPT(cold pain threshold) and HPT(heat pain threshold) did not show statistical difference between the affected and unaffected sides. Further researches are required to compare thermal thresholds relative to types of nerve deficits such as thermal hyper- or hypoesthesia and hyper- or hypoalgesia for larger sample.