• Title/Summary/Keyword: Reliability of the Test Results

Search Result 3,689, Processing Time 0.036 seconds

수동적 요추 신전 검사와 엎드린 상태에서 요추 불안정성 검사의 신뢰도와 타당도 (The Reliability and Validity of the Passive Lumbar Extension Test and the Prone Instability Test)

  • 사재민;김선엽
    • 한국전문물리치료학회지
    • /
    • 제18권3호
    • /
    • pp.85-93
    • /
    • 2011
  • The purpose of this study was to establish the reliability and validity of the passive lumbar extension (PLE) test and prone instability test (PIT). Thirty-three subjects (14 males, 19 females) with lower back pain enrolled in the study and the subjects were divided into 2 groups (positive and negative instability groups) on the basis of radiographies of flexion and extension. Reliability was determined by the kappa coefficient and validity was examined using calculated sensitivity, specificity, and the likelihood ratio. The results showed that the reliability of the PLE test was higher than the PIT (intra-rater reliability: k=.86 and k=.81, interrater reliability: k=.65 and k=.62) and the validity of the PLE test was also higher than the PIT (sensitivity: 91% and 62%, specificity: 95% and 85% positive likelihood ratio: 20.00 and 4.10, negative likelihood ratio: .10 and .45). In conclusion, we think that the PLE test was a more reliable and valid method for lumbar instability than the PIT.

Test-retest reliability of the questionnaire in the Sasang constitutional analysis tool (SCAT)

  • Lee, Jeongyun;Yim, Mi Hong;Kim, Jong Yeol
    • Integrative Medicine Research
    • /
    • 제7권2호
    • /
    • pp.136-140
    • /
    • 2018
  • Background: The Sasang constitutional analysis tool (SCAT) is an integrated Sasang constitutional analysis system developed by the Korea Institute of Oriental Medicine. This study aimed to evaluate the reliability of a questionnaire for measuring personality and pathophysiological symptoms that is one of the components of the SCAT. Methods: In this study, data were collected from university students in their twenties. Tests were administered twice, with an interval of 4 weeks between tests. Test-retest data from 176 students were collected and used for analysis. Internal consistency reliability was analyzed by using Cronbach's alpha coefficient, and test-retest reliability was analyzed by using Spearman's rank correlation coefficient. Results: Cronbach's alpha coefficient was 0.788 for personality, 0.511 for eating habits, 0.718 for digestion, 0.667 for heat- or cold-wise penchant, and 0.612 for water ingestion. Spearman's rank correlation coefficients, which were used to assess correlations between test and retest results, ranged from 0.444 to 0.828. Conclusion: The internal consistency and test-retest reliability of the SCAT questionnaire were found to be satisfactory.

회전 구동부의 신뢰성 개선을 위한 쿠션 성형 방법의 결정 (Molding Method Determination of Cushion for Improving Reliability of the Rotation Driving System)

  • 남윤욱;손기중;성시일
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제17권3호
    • /
    • pp.207-212
    • /
    • 2017
  • Purpose: This article provides an efficient cushion molding method for improving reliability of the rotation driving system. Method: Allowable stress level for cushion is calculated by using physical characteristics of the rotation driving system. In addition, various test units are manufactured and used to conduct the rebound resilience, the burst pressure and the alternating load test. Results: Actual allowable stress level and test results of the rebound resilience, the burst pressure and the alternating load test are provided. Conclusion: The cushion manufactured by the compression molding method gives more preferable characteristics for improving the reliability of the rotation driving system.

Developing the Accurate Method of Test Data Assessment with Changing Reliability Growth Rate and the Effect Evaluation for Complex and Repairable Products

  • So, Young-Kug;Ryu, Byeong-Jin
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제15권2호
    • /
    • pp.90-100
    • /
    • 2015
  • Reliability growth rate (or reliability growth curve slope) have the two cases of trend as a constant or changing one during the reliability growth testing. The changing case is very common situation. The reasons of reliability growth rate changing are that the failures to follow the NHPP (None-Homogeneous Poisson Process), and the solutions implemented during test to break out other problems or not to take out all of the root cause permanently. If the changing were big, the "Goodness of Fit (GOF)" of reliability growth curve to test data would be very low and then reduce the accuracy of assessing result with test data. In this research, we are using Duane model and AMSAA model for assessing test data and projecting the reliability level of complex and repairable system as like construction equipment and vehicle. In case of no changing in reliability growth rate, it is reasonable for reliability engineer to implement the original Duane model (1964) and Crow-AMSAA model (1975) for the assessment and projection activity. However, in case of reliability growth rate changing, it is necessary to find the method to increase the "GOF" of reliability growth curves to test data. To increase GOF of reliability growth curves, it is necessary to find the proper parameter calculation method of interesting reliability growth models that are applicable to the situation of reliability growth rate changing. Since the Duane and AMSAA models have a characteristic to get more strong influence from the initial test (or failure) data than the latest one, the both models have a limitation to contain the latest test data information that is more important and better to assess test data in view of accuracy, especially when the reliability growth rate changing. The main objective of this research is to find the parameter calculation method to reflect the latest test data in the case of reliability growth rate changing. According to my experience in vehicle and construction equipment developments over 18 years, over the 90% in the total development cases are with such changing during the developing test. The objective of this research was to develop the newly assessing method and the process for GOF level increasing in case of reliability growth rate changing that would contribute to achieve more accurate assessing and projecting result. We also developed the new evaluation method for GOF that are applicable to the both models as Duane and AMSAA, so it is possible to compare it between models and check the effectiveness of new parameter calculation methods in any interesting situation. These research results can reduce the decision error for development process and business control with the accurately assessing and projecting result.

가속모델의 가속계수 조사 (Investigation of the Acceleration Coefficient in Acceleration Models)

  • 박현종;김성준;박범식;박소미;성시일
    • 품질경영학회지
    • /
    • 제52권1호
    • /
    • pp.135-148
    • /
    • 2024
  • Purpose: This study is to investigate the literature on accelerated tests based on the acceleration model and to provide a compilation of results on the parameters applied in the acceleration model and the test conditions. Methods: This research is conducts a literature review on accelerated tests using the acceleration model, with a focus on test targets, test conditions, and parameter values. The study is organizing the results of this literature review to facilitate their application in the design of reliability tests. Results: A literature review investigated a variety of test targets, test conditions, and parameter values. Conclusion: The results of the literature research conducted revealed various acceleration model parameter. Such literature research on accelerated tests can establish the foundation for reliability test design and contribute to future product development and quality improvement

핵연료 집합체 노외성능시험의 절차와 결과에 대한 신뢰성확보를 위한 예비고찰; 횡방향 진동특성시험(I) (Preliminary Study for the Reliability Assurance on Results and Procedure of the Out-pile Mechanical Characterization Test for a Fuel Assembly; Lateral Vibration Test(I))

  • 이강희;윤경호;김형규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1854-1858
    • /
    • 2007
  • The reliability assurance with respect to the test procedure and results of the out-pile mechanical performance test for the nuclear fuel assembly is an essential task to assure the test quality and to get a permission for fuel loading into the commercial reactor core. For the case of vibration test, which is carried out to obtain basic dynamic characteristics of the fuel assembly, proper management and appropriate calibration of instruments and devices used in the test, various efforts to minimize the possible error during the test and signal acquisition process are needed. Additionally, the deep understanding both of the theoretical assumption and simplification cation for the signal processing/modal analysis and of the functions of the devices used in the test were highly required. Finally, to verify the test result to represent the accurate natural characteristics of the structure, the proper correlation analysis between the theoretical and experimental method has to be carried out. In this study, the overall procedure and result of lateral vibration test for the fuel assembly's mechanical characterization were briefly introduced. A series of measures to assure and improve the reliability of the vibration test were discussed.

  • PDF

뇌졸중 환자에서 Figure-of-8 walk test의 신뢰도와 타당도 (The Reliability and Validity of Figure-of-8 Walk Test in Patients with Stroke)

  • 김양호;임재헌
    • 대한임상전기생리학회지
    • /
    • 제10권1호
    • /
    • pp.29-37
    • /
    • 2012
  • Purpose : The purpose of this study was to establish intra-rater, inter-rater, test-retest reliability, and concurrent validity of figure-of-8 walk test in people with stroke. Methods : The subjects of this study were 17 patients who were diagnosed with a stroke. Subjects were tested twice by the same raters, with 1 day between tests. Subjects were assessed by two physical therapists. Test-retest reliability was calculated using intraclass correlation coefficients (ICC). The concurrent validity was demonstrated by spearman correlation of F8WT with 10m walking test (10MWT), timed up and go test (TUG), Berg balance scale (BBS), dynamic gait index (DGI) and four square step test (FSST). Results : Intra-rater, inter-rater, test- retest of F8WT time, showed high reliability. Intra-rater, inter-rater, test-retest of F8WT steps demonstrated high reliability. Intra-rater, inter-rater, test-retest of F8WT total smoothness score showed below moderate reliability. There was a significant positive correlation of F8WT time with 10MWT, TUG, FSST. There was a significant negative correlation of F8WT time with DGI, BBS. There was a significant positive correlation of F8WT steps with 10MWT, TUG, FSST. There was a significant negative correlation of F8WT steps with DGI. There was a significant positive correlation of F8WT test total smoothness score with BBS. Conclusion : The time, and number of steps in F8WT show high inter, intra-rater, test-retest reliability. The F8WT smoothness shows below moderate reliability. The F8WT shows high concurrent validity with other comparable balance, and walking tests. The F8WT is a valid and reliable measure for assessing walking function in patients with a stroke.

Reliability of joint angle during sit-to-stand movements in persons with stroke using portable gait analysis system based wearable sensors

  • An, Jung-Ae;Lee, Byoung-Hee
    • Physical Therapy Rehabilitation Science
    • /
    • 제8권3호
    • /
    • pp.146-151
    • /
    • 2019
  • Objective: The purpose of this study was to investigate the test-retest reliability and concurrent validity of the joint angle of the lower extremities during sit-to-stand movements with wearable sensors based on a portable gait analysis system (PGAS), and the results were compared with a analysis system (MAS) to predict the clinical potential of it. Design: Cross-sectional study. Methods: Sixteen persons with stroke (9 males, 7 females) participated in this study. All subjects had the MAS and designed PGS applied simultaneously and eight sensor units of designed PGAS were placed in a position to avoid overlap with the reflexive markers from MAS. The initial position of the subjects was 90º of hip, knee, and ankle joint flexion while sitting on a chair that was armless and backless. The height of the chair was adjusted to each individual. After each trial, the test administrator checked the quality of data from both systems that measured sit-to-stand for test-retest reliability and concurrent validity. Results: As a result, wearable sensor based designed PGAS and MAS demonstrated reasonable test-retest reliability for the assessment of joint angle in the lower extremities during sit-to-stand performance. The intra-class correlation coefficients (ICCs) for wearable sensor based designed PGAS showed an acceptable test-retest reliability, with ICCs ranging from 0.759 to 0.959. In contrast, the MAS showed good to excellent test-retest reliability, with ICCS ranging from 0.811 to 0.950. In concurrent validity, a significant positive relationship was observed between PGAS and MAS for variation of joint angle during sit-to-stand movements (p<0.01). A moderate to high relationship was found in the affected hip (r=0.665), unaffected hip (r=0.767), affected knee (r=0.876), unaffected knee (r=0.886), affected ankle (r=0.943) and unaffected ankle (r=0.823) respectively. Conclusions: The results of this study indicated that wearable sensor based designed PGAS showed acceptable test-retest reliability and concurrent validity in persons with stroke for sit-to-stand movements and wearable sensors based on developed PGAS may be a useful tool for clinical assessment of functional movement.

Accelerated Test Design for Crankshaft Reliability Estimation

  • Jung, D.H.;Pyun, Y.S.;Gafurov, A.;Chung, W.S.
    • International Journal of Reliability and Applications
    • /
    • 제10권2호
    • /
    • pp.109-118
    • /
    • 2009
  • Crankshaft, the core element of the engine of a vehicle, transforms the translational motion generated by combustion to rotational motion. Its failure will cause serious damage to the engine so its reliability verification must be performed. In this study, the S-N data of the bending and torsion fatigue limits of a crankshaft are derived. To evaluate the reliability of the crankshaft, reliability verification and analysis are performed. For the purpose of further evaluation, the bending and torsion tests of the original crankshaft are carried out, and failure mode analysis is made. The appropriate number of samples, the applied load, and the test time are computed. On the basis of the test results, Weibull analysis for the shape and scale parameters of the crankshaft is estimated. Likewise, the $B_{10}$ life under 50% of the confidence level and the MTTF are exactly calculated, and the groundwork for improving the reliability of the crankshaft is laid.

  • PDF

테스트 단계를 고려한 소프트웨어 신뢰성 평가에 관한 연구 (A Study on an Evaluation of Software Reliability with Test)

  • 유창열;권대고
    • 한국컴퓨터정보학회논문지
    • /
    • 제3권2호
    • /
    • pp.1-6
    • /
    • 1998
  • 소프트웨어 개발 과정에서 신뢰성 평가는 대단히 중요하다. 테스트 단계를 구분하지 않은 소프트웨어의 신뢰도 평가˙분석의 결과는 신뢰성이 결여될 수 있다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 테스트 단계를 구분하여 신뢰성 평가에 관한 연구를 하였다. 이를 위해 단위 테스트(Unit Test), 통합 테스트(Integration Test), 확인 테스트(Validation Test), 시스템 테스트(System Test)에서 발견된 결함 데이터를 이용하여 소프트웨어 신뢰도 성장 모델(Software Reliability Growth Model : SRGM)인 지수형, 지연 S자형, 습숙 S자형 SRGM에 적용하였다. 그 결과 단위 테스트에서는 습숙 S자형, 통합 테스트에서는 지연 S자형, 확인테스트에서는 지연 S자형, 시스템 테스트에서는 지수형 SRGM이 가장 적합한 것임을 입증하였으며, 신뢰성 평가 척도인 파라미터 추정, 편차 자승합, 기대잔존 결함수 등에서 본 연구의 결과가 기존의 방법보다 우수함을 보였다.

  • PDF