• Title/Summary/Keyword: Reliability design

Search Result 5,443, Processing Time 0.034 seconds

Reliability Evaluation of a Slurry Pump (슬러리 펌프의 신뢰성 향상)

  • Jung, Dong Soo
    • Journal of Applied Reliability
    • /
    • v.16 no.4
    • /
    • pp.263-271
    • /
    • 2016
  • Purpose: A slurry pump for flue gas desulfurization system performs a role that discharges the slurry of a plaster shape in a thermal power plant. Since a slurry pump transfers the slurry by the centrifugal force, it has the friction wear in the impeller and liner because of the slurry. Methods: In this study, failure analysis and test evaluation on the slurry pump have been proposed and the process that reliability of the product improves through design improvement has been presented. And failure cause of typical failure case has been investigated and improvement design has been presented. Results: Reliability improvement is established by analysis of the test results of before and after acceleration test. Conclusion: This study can be provided to improve the product reliability through failure analysis of a slurry pump.

Evaluation of Reliability for critical unit of machinery system (기계류 핵심 유니트의 신뢰성 평가기술)

  • 이승우;송준엽;강재훈;황주호;이현용;박화영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1014-1017
    • /
    • 2000
  • Reliability engineering is regarded as the major and important roll for all industry. And advanced manufacturing systems with high speed and intelligent have been developed for the betterment of machining ability. In this study, we have systemized evaluation of reliability for machinery system. We proposed the reliability assessment and design review method using analyzing critical units of high speed and intelligent machine system. In addition, we have not only designed and developed test bed system for acquiring reliability data, but also have constructing WEB system for suppling reliability which is provided in design phase. From this study, we will expect to guide and introduce the reliability engineering in developing and processing phase of high quality product.

  • PDF

Design of Bayesian Zero-Failure Reliability Demonstration Test and Its Application (베이지안 신뢰성입증시험 설계와 활용)

  • Kwon, Young Il
    • Journal of Applied Reliability
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • A Bayesian zero-failure reliability demonstration test method for products with exponential lifetime distribution is presented. Beta prior distribution for reliability of a product is used to design the Bayesian test plan and selecting a prior distribution using a prior test information is discussed. A test procedure with zero-failure acceptance criterion is developed that guarantees specified reliability of a product with given confidence level. An example is provided to illustrate the use of the developed Bayesian reliability demonstration test method.

Reliability-based Design Optimization for Lower Control Arm using Limited Discrete Information (제한된 이산정보를 이용한 로어컨트롤암의 신뢰성 기반 최적설계)

  • Jang, Junyong;Na, Jongho;Lim, Woochul;Park, Sanghyun;Choi, Sungsik;Kim, Jungho;Kim, Yongsuk;Lee, Tae Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.100-106
    • /
    • 2014
  • Lower control arm (LCA) is a part of chassis in automotive. Performances of LCA such as stiffness, durability and permanent displacement must be considered in design optimization. However it is hard to consider different performances at once in optimization because these are measured by different commercial tools like Radioss, Abaqus, etc. In this paper, firstly, we construct the integrated design automation system for LCA based on Matlab including Hypermesh, Radioss and Abaqus. Secondly, Akaike information criterion (AIC) is used for assessment of reliability of LCA. It can find the best estimated distribution of performance from limited and discrete stochastic information and then obtains the reliability from the distribution. Finally, we consider tolerances of design variables and variation of elastic modulus and achieve the target reliability by carrying out reliability-based design optimization (RBDO) with the integrated system.

Reliability-Based Structural Integrity Assessment of Wall-Thinned Pipes Using Partial Safety Factor (부분안전계수를 이용한 감육배관의 신뢰도 기반 건전성 평가)

  • Lee, Jae-Bin;Huh, Nam-Su;Park, Chi-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.518-524
    • /
    • 2013
  • Recently, probabilistic assessments of nuclear power plant components have generated interest in the nuclear industries, either for the efficient inspection and maintenance of older nuclear plants or for improving the safety and cost-effective design of newly constructed nuclear plants. In the present paper, the partial safety factor (PSF) of wall-thinned nuclear piping is evaluated based on a reliability index method, from which the effect of each statistical variable (assessment parameter) on a certain target probability is evaluated. In order to calculate the PSF of a wall-thinned pipe, a limit state function based on the load and resistance factor design (LRFD) concept is first constructed. As for the reliability assessment method, both the advanced first-order second moment (AFOSM) method and second-order reliability method (SORM) are employed to determine the PSF of each probabilistic variable. The present results can be used for developing maintenance strategies considering the priorities of input variables for structural integrity assessments of wall-thinned piping, and this PSF concept can also be applied to the optimal design of the components of newly constructed plants considering the target reliability levels.

Reliability analysis for design of shield tunnel segment lining under earthquake load (쉴드 터널 세그먼트 라이닝의 내진설계를 위한 신뢰성해석)

  • Park, Young-Bin;Kim, Do;Byun, Yosep;Lee, Gyu-Phil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.249-259
    • /
    • 2020
  • Design criteria for limit state design of underground structures have already been published overseas, and research has been conducted to revise the design method in Korea. In order to estimate the probability of failure under seismic load, the probability variable should be considered in the reliability analysis. In this study, the failure probability of the existing shield tunnel segment lining design was calculated by applying the coefficient of variation (COV) for the earth pressure and the seismic load effect in consideration of the statistical characteristics of the domestic ground properties. Based on the results of calculating the reliability index (β) from the calculated probability of failure and analyzing the reliability index according to the change in the load factor and the results of domestic and foreign research, the target reliability index (βT) during earthquakes of shield tunnel segment lining is analyzed to be "2.3", it was proposed as the target reliability index for the design of the limit state under seismic load.

Design Reliability Estimation of Low Energy Exploding Foil Initiator (LEEFI형 착화장치의 설계 신뢰도 추정)

  • Lee, Minwoo;Back, Seungjun;Son, Youngkap;Jang, Seung-gyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.40-48
    • /
    • 2018
  • This paper presents a simulation-based design reliability estimation method of a low-energy exploding foil initiator (LEEFI) using a meta-model and describes the design reliability estimation results. The flyer velocity of the LEEFI is critical to initiate the explosive. Evaluation of the flyer velocity from mechanistic models in open literature requires a long computation time due to the multi-physical phenomena that generate the velocity. Moreover, the higher levels of confidence required for an initiator with high reliability incur higher computation costs. Thus, a meta-model of the flyer velocity over time was constructed in order to increase the computational efficiency for a reliable estimation. For different distributions and sigma levels of the design variables, the design reliability estimation results using the meta-model are provided. Additionally, the computational efficiency and accuracy of the estimation method are analyzed.

Development of an Efficient Reliability Education Program for Domestic Industries (국내 실정에 적합한 신뢰성 교육 모형에 관한 기초연구)

  • 권영섭;권영일;남경현;박동호;임재학;정해성
    • Journal of Applied Reliability
    • /
    • v.4 no.1
    • /
    • pp.27-37
    • /
    • 2004
  • In this paper, we propose a framework of reliability education program for industry people taking charge of reliability improvement or reliability evaluation. To this end, we investigate the situation of how reliability theories or reliability technologies are applied to industry and how industry people have reliability educations. And we also identify reliability theories or technologies which industry people need to ensure. Based on the result of such studies, we design a reliability education program which is appropriate for industry people.

  • PDF

Development of an Efficient Reliability Education Program for Domestic Industries (국내 실정에 적합한 신뢰성 교육 모형 개발에 관한 연구)

  • 권영섭;권영일;남경현;박동호;임재학;정해성
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.269-280
    • /
    • 2004
  • In this paper, we propose a framework of reliability education program for industry people taking charge of reliability improvement or reliability evaluation. To this end, we investigate the situation of how reliability theories or reliability technologies are applied to industry and how industry people have reliability educations. And we also identify reliability theory or technology which industry people need to ensure. Based on the result of such studies, we design a reliability education program which is appropriate for industry people.

  • PDF

Reliability-Based Design Optimization of 130m Class Fixed-Type Offshore Platform (신뢰성 기반 최적설계를 이용한 130m급 고정식 해양구조물 최적설계 개발)

  • Kim, Hyun-Seok;Kim, Hyun-Sung;Park, Byoungjae;Lee, Kangsu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.263-270
    • /
    • 2021
  • In this study, a reliability-based design optimization of a 130-m class fixed-type offshore platform, to be installed in the North Sea, was carried out, while considering environmental, material, and manufacturing uncertainties to enhance its structural safety and economic aspects. For the reliability analysis, and reliability-based design optimization of the structural integrity, unity check values (defined as the ratio between working and allowable stress, for axial, bending, and shear stresses), of the members of the offshore platform were considered as constraints. Weight of the supporting jacket structure was minimized to reduce the manufacturing cost of the offshore platform. Statistical characteristics of uncertainties were defined based on observed and measured data references. Reliability analysis and reliability-based design optimization of a jacket-type offshore structure were computationally burdensome due to the large number of members; therefore, we suggested a method for variable screening, based on the importance of their output responses, to reduce the dimension of the problem. Furthermore, a deterministic design optimization was carried out prior to the reliability-based design optimization, to improve overall computational efficiency. Finally, the optimal design obtained was compared with the conventional rule-based offshore platform design in terms of safety and cost.